一篇文章学会大模型【魔搭社区教程】【本地部署通义Qwen2大模型:配置+微调+部署,带你训练自己的行业大模型!】【源代码】【已经解决天坑】【程序员猫爪】

Hey小伙伴们👋,今天给大家带来一个超实用的教程,教你如何本地部署通义Qwen2大模型,打造专属于你的行业大模型!🌟
🔧【配置】:首先,你需要准备好硬件和软件环境。别担心,教程里都有详细说明,即使是小白也能轻松上手。
🎯【微调】:接下来,就是微调环节。通过微调,你的模型能更好地理解特定行业的数据和需求。这可是提升模型性能的关键步骤哦!
🚀【部署】:最后,将训练好的模型部署到你的系统中。这样,你就可以随时随地使用自己的行业大模型了!
🌈 已经有很多小伙伴成功解决了“天坑”问题,你也一定可以!跟着教程走,你将拥有一个能听懂你、理解你、服务于你的智能大模型。
在这里插入图片描述

一、去魔搭领取免费Linux服务器【程序员猫爪】

在这里插入图片描述

二、下载代码【程序员猫爪】

https://github.com/QwenLM/Qwen.git

git clone https://github.com/QwenLM/Qwen.git

在这里插入图片描述

三、安装环境【程序员猫爪】

1、安装anaconda

wget -c https://repo.anaconda.com/archive/Anaconda3-2023.03-1-Linux-x86_64.sh
bash Anaconda3-2023.03-1-Linux-x86_64.sh

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
看一下安装的位置
在这里插入图片描述

vim /etc/profile
export PATH=/root/anaconda3/bin:$PATH
vim ~/.bashrc
export PATH=/root/anaconda3/bin:$PATH
source /etc/profile
source ~/.bashrc

在这里插入图片描述

2、镜像源配置

conda配置

vim ~/.condarc

在这里插入图片描述

channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
show_channel_urls: true
 
ssl_verify: true
allow_conda_downgrades: true

3、pip配置

mkdir ~/.pip
cd ~/.pip/
vim pip
<think>好的,我现在需要帮助用户了解如何部署塔(ModelScope)社区的模型。首先,我需要回忆一下塔社区的基本信息。ModelScope是阿里巴巴推出的一个开源模型平台,提供各种预训练模型和工具,方便开发者使用和部署。用户可能已经知道一些基本概念,但需要具体的部署步骤。 接下来,我应该分解部署流程。通常,部署一个模型包括环境准备、模型选择、安装依赖、下载模型、编写推理代码以及部署服务等步骤。需要确保每个步骤都清晰,并且考虑到用户可能遇到的常见问题,比如环境配置错误或依赖冲突。 然后,我需要检查是否有引用内容需要整合。用户提供的参考引用[^1]提到大模型应用的学习和落地,这可能意味着用户希望实际应用模型,而不仅仅是理论部署。因此,在回答中可能需要强调实际应用中的注意事项,比如性能优化或服务监控。 还要注意格式要求,比如行内数学公式用$...$,独立公式用$$...$$,但在这个问题中可能用不到太多数学公式,不过如果有参数设置或数学表达式,要正确应用。同时,需要用中文回答,结构清晰,分步骤说明。 用户可能的问题包括环境配置的具体命令、如何选择适合的模型、如何处理依赖问题、推理代码示例以及部署后的测试方法。需要确保每个步骤都有对应的解释,并且提供示例代码,比如Python的调用示例。 另外,需要生成相关问题,可能涉及性能优化、模型微调、常见错误处理等,这些都需要在最后部分列出,帮助用户进一步探索。 最后,要确保回答真实可靠,可能需要参考ModelScope的官方文档,确保步骤正确无误。如果有不确定的地方,比如特定模型的依赖版本,应该建议用户查阅官方资料或社区支持。</think>### 塔(ModelScope)社区模型部署指南 #### 一、环境准备 1. **Python环境**:建议使用 Python 3.8+,通过虚拟环境隔离依赖: ```bash conda create -n modelscope python=3.8 conda activate modelscope ``` 2. **安装ModelScope核心库**: ```bash pip install modelscope ``` 若需GPU支持,需提前安装对应版本的PyTorch/CUDA。 #### 二、模型选择与下载 1. **访问ModelScope Hub**: 在[官网](https://modelscope.cn/models)搜索目标模型(如`达摩院语音识别模型`),复制模型ID(如`damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch`)。 2. **代码调用下载**: ```python from modelscope import snapshot_download model_dir = snapshot_download("damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch") ``` #### 三、模型推理示例 ```python from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks # 语音识别示例 asr_pipeline = pipeline(task=Tasks.auto_speech_recognition, model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch") result = asr_pipeline(audio_in="test.wav") print(result["text"]) ``` #### 四、服务化部署(以API服务为例) 1. **安装FastAPI**: ```bash pip install fastapi uvicorn ``` 2. **编写API服务**: ```python from fastapi import FastAPI from modelscope.pipelines import pipeline app = FastAPI() asr_pipeline = pipeline(task="auto-speech-recognition", model="damo/speech_paraformer-large_asr...") @app.post("/asr") def transcribe(audio_path: str): result = asr_pipeline(audio_in=audio_path) return {"text": result["text"]} ``` 3. **启动服务**: ```bash uvicorn main:app --reload --port 8000 ``` #### 五、部署优化建议 1. **性能调优**:启用GPU加速、使用模型量化(如`model.half()`) 2. **资源监控**:通过`nvidia-smi`或Prometheus监控显存/算力使用 3. **错误处理**:添加`try-except`块捕获`ModelNotFoundError`等异常
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员猫爪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值