综合能源系统通过电、热、冷及天然气等多种能源的协调利用,能够有效提升能源利用效率、促进可再生能源消纳,并降低整体运行成本。然而,由于存在多种耦合设备、不同形式的能量需求以及不确定的可再生出力,综合能源调度问题通常呈现出多目标、强约束和非线性等特点。
作者:张家梁(改进)
引言
随着全球能源结构转型和“双碳”目标的推进,单一能源系统已难以满足现代社会对清洁、高效和灵活供能的需求。综合能源系统(Integrated Energy System, IES)因能够在同一平台上实现电、热、冷、气等多种能源的协调优化,被视为推动能源转型的重要途径。通过多能互补与需求侧响应,综合能源系统不仅能够提升可再生能源的消纳能力,还能降低运行成本、提升能源利用效率。
然而,综合能源系统的调度问题具有以下特点:
(1)多目标性:系统需在运行成本、用户成本、环境效益等目标之间取得平衡;
(2)强耦合性:电、热、冷及天然气子系统之间存在复杂耦合关系,调度需同时满足多能平衡;
(3)不确定性:光伏、风电等可再生能源的波动性使得调度具有较大不确定性;
(4)复杂约束:包括设备容量约束、能量平衡约束、需求响应约束等。
为解决上述问题,研究者提出了多种优化方法,包括混合整数规划、启发式算法及智能优化算法。其中,智能优化算法因具有全局搜索能力和较强的适应性,逐渐成为解决综合能源系统复杂调度问题的有力工具。粒子群优化(PSO)作为典型的群智能算法,因其原理简单、参数少、收敛速度快而得到广泛应用。但传统 PSO 在处理多目标问题时容易出现收敛性不足和解集分布不均的现象。为此,多目标粒子群优化(MOPSO)算法引入非支配解档案库和多样性维持机制,能够有效求解多目标优化问题,并得到分布均匀的 Pareto 最优解集。
本文的主要工作如下:
1.构建考虑燃气轮机、电热锅炉、电制冷机、光伏、风电及电网购售电的综合能源系统模型,建立电、热、冷三网平衡方程,并引入需求响应机制。
2.以运行经济性、用户成本和可再生能源利用率为优化目标,建立综合能源系统多目标调度模型。
3.提出基于 MOPSO 的调度方法,通过档案库与网格机制实现解集的全局探索与多样性维持。
4.通过算例验证方法的有效性,并对 Pareto 解集进行分析,展示不同调度方案下的性能权衡关系。
本文研究为综合能源系统的低碳高效运行提供了一种切实可行的优化方法,同时也为智能优化算法在能源系统调度中的应用提供了参考。
系统架构
1.系统概述
本系统基于多目标粒子群优化算法(Multi-Objective Particle Swarm Optimization, MOPSO)构建了一个综合能源系统调度优化平台,旨在研究电、热、冷及天然气等多种能源在耦合系统中的协调运行与优化过程。系统的核心是模拟综合能源系统在不同运行条件下的多能量转换与传输,同时考虑负荷需求波动、可再生能源出力不确定性以及需求响应机制,实现运行经济性、用户成本和可再生能源利用率的多目标优化。
系统主要包括以下模块:
初始化模块:加载光伏、风电预测数据以及电、热、冷负荷曲线和购售电价格等基础数据,设定设备容量与能效参数。
能量平衡计算模块:对电、热、冷三网的能量供需关系进行建模,计算天然气机组、电热锅炉、电制冷机、可再生能源和电网交互的出力分配。
优化调度模块:基于 MOPSO 算法进行多目标优化,维护外部档案库并产生分布均匀的 Pareto 最优解集。
状态更新模块:在每一迭代中更新粒子群的位置与速度,结合可行性判定与突变操作,保证解的有效性与多样性。
可视化模块:实时显示 Pareto 前沿演化过程,并绘制电网、热网与冷网的运行曲线。
数据存储与分析模块:保存优化结果及调度方案,支持成本收益分析、用户支出统计和不同方案间的对比研究。
2.系统流程图
研究方法
研究方法上,本研究首先确定综合能源系统的研究目标与范围,收集电、热、冷负荷及能源价格等基础数据,并进行适当的预处理。随后建立系统能量平衡模型,设定设备运行约束与多目标函数。方法上采用多目标粒子群优化(MOPSO)算法,设定相关参数并进行迭代求解,得到前沿解集及最优运行方案。在结果分析阶段,对优化后的电、热、冷调度计划进行对比与可视化,提取各项经济性指标,并结合需求响应效果评估系统运行效益。最后通过与基准方案比较及灵敏度分析,对模型的合理性和适用性进行验证,为后续方法改进与实际应用提供参考。
实验结果
实验结果表明,所提出的多能互补与需求响应优化方法能够有效提升系统净收益、增加可再生能源利用率,并在满足电、热、冷负荷的同时降低用户侧运行成本。
实验结果
运行main.m
图1(Pareto):多目标收敛与多样性
分析:第100次迭代时 Pareto 前沿已基本收敛并保持良好多样性(档案约92个非支配解),可作为代表解候选集。
图2(电侧):购售电与电源出力
分析:电侧以购电与气转电为主供给,PV/WT 利用偏低,需求响应在峰段起到一定削峰作用。
图3(热侧):电热锅炉与气转热协调
分析:热侧由电热锅炉与气转热协同跟踪负荷高峰,需求响应辅助削峰,整体运行平稳。
图4(冷侧):电制冷与气转冷协同
分析:冷侧白天负荷高企,电制冷与气转冷共同供冷、傍晚回落,需求响应平滑峰谷。
系统实现
本系统完全基于MATLAB平台开发,主要集成以下脚本与模块:
研究结论
研究结论方面,本研究以多目标粒子群优化方法为核心,构建了电—热—冷综合能源系统的调度模型,并引入需求响应机制进行优化。结果表明,该方法能够在保证负荷供给的前提下,有效提升可再生能源利用率,降低购能成本,增加系统整体净收益,同时平滑负荷曲线,缓解峰值压力。通过与基准方案对比,验证了模型的经济性与灵活性,为综合能源系统的高效运行和可持续发展提供了可行的技术路径与决策参考。
实验环境
硬件配置如表:实验所用硬件平台为惠普(HP)暗影精灵10台式机整机,运行 Windows 11 64 位操作系统,作为模型训练与测试的主要计算平台,能够良好支持Matlab的开发需求。
官方声明
实验环境真实性与合规性声明:
本研究所使用的硬件与软件环境均为真实可复现的配置,未采用虚构实验平台或虚拟模拟环境。实验平台为作者自主购买的惠普(HP)暗影精灵 10 台式整机,具体硬件参数详见表。软件环境涵盖操作系统、开发工具、深度学习框架、MATLAB工具等,具体配置详见表,所有软件组件均来源于官方渠道或开源社区,并按照其许可协议合法安装与使用。
研究过程中严格遵循学术诚信和实验可复现性要求,确保所有实验数据、训练过程与结果均可在相同环境下被重复验证,符合科研规范与工程实践标准。
版权声明:
本算法改进中涉及的文字、图片、表格、程序代码及实验数据,除特别注明外,均由7zcode.张家梁独立完成。未经7zcode官方书面许可,任何单位或个人不得擅自复制、传播、修改、转发或用于商业用途。如需引用本研究内容,请遵循学术规范,注明出处,并不得歪曲或误用相关结论。
本研究所使用的第三方开源工具、框架及数据资源均已在文中明确标注,并严格遵守其相应的开源许可协议。使用过程中无违反知识产权相关法规,且全部用于非商业性学术研究用途。