GoogleNet架构解析

26 篇文章 ¥19.90 ¥99.00
本文详细介绍了GoogleNet架构,重点解析了其核心Inception结构的设计原理,包括1×1卷积、多尺度卷积核的使用,以及其在减少计算量和参数数量上的创新。此外,还探讨了GoogleNet的平均池化设计、辅助分类器的作用,并提供了模型复现的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考论文:Going deeper with convolutions

作者:Christian Szegedy,Wei Liu,Yangqing Jia(贾扬清,Caffe作者),Pierre Sermanet,Scott Reed,Dragomir Anguelov,Dumitru Erhan,Vincent Vanhoucke,Andrew Rabinovich

1、GoogleNet简介

  GoogleNet 是 2014 年 ImageNet Challenge 图像识别比赛的冠军。从它的名字我们就 可以看出是来自谷歌的团队完成的。前面我们有介绍,GoogleNet 之所以获得冠军,是因为 它进行模型融合以后得到的效果要比 VGGNet 模型融合之后的效果要好。不过单模型比拼, 它与 VGGNet 的效果相当。

  虽然 GoogleNet 的模型的效果跟 VGGNet 相差不大,不过它比 VGGNet 更具有创新 性。GoogleNet 有一些更具创新性的设计,为后来的模型设计提供了很多新的思路。

2、Inception结构

  在 GoogleNet 最特别的设计就是 Inceptio

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

别团等shy哥发育

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值