经典动态规划-背包问题
一、动态规划 0-1背包问题(不重复使用)
给定一个可装载重量为W的背包和N个物品,每个物品有重量和质量两个属性。其中第i个物体的重量为wt[i], 质量为val[i]. 现在让你用这个背包装物品,最多能装的价值是多少?
// W 为背包总体积
// N 为物品数量
// weights 数组存储 N 个物品的重量
// values 数组存储 N 个物品的价值
public int knapsack(int W, int N, int[] weights, int[] values) {
int[][] dp = new int[N + 1][W + 1];
for (int i = 1; i <= N; i++) {
int w = weights[i - 1], v = values[i - 1];
for (int j = 1; j <= W; j++) {
if (j >= w) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - w] + v);
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
return dp[N][W];
}
空间优化
public int knapsack(int W, int N, int[] weights, int[] values) {
int[] dp = new int[W + 1];
for (int i = 1; i <= N; i++) {
int w = weights[i - 1], v = values[i - 1];
for (int j = W; j >= 1; j--) {
if (j >= w) {
dp[j] = Math.max(dp[j], dp[j - w] + v);
}
}
}
return dp[W];
}
1.1 分割等和子集问题(无顺序 true/false问题 )
题目:给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
注意:
每个数组中的元素不会超过 100
数组的大小不会超过 200
示例 1:输入: [1, 5, 11, 5]
输出: true
解释: 数组可以分割成 [1, 5, 5] 和 [11].
解题思路:从数组中挑选值 使其满足target的问题。即0-1背包问题
class Solution {
public boolean canPartition(int[] nums) {
int sum = 0;
for(int num:nums){
sum+= num;
}
if(sum%2==1){
return false;
}
// 动态规划解题即从数组中挑选数字 使其满足等于target
int target = sum/2;
int length = nums.length;
boolean[][] dp = new boolean[length+1][target+1];
// 初始化
for(int i=0;i<=length;i++){
dp[i][0] = true;
}
// 对其选择
for(int i=1;i<=length;i++){
for(int j=1;j<=target;j++){
if(j>=nums[i-1]){
// 能放(可放可不放)
dp[i][j] = dp[i-1][j] || dp[i-1][j-nums[i-1]];
}else{
// 不能放
dp[i][j] = dp[i-1][j];
}
}
}
return dp[length][target];
}
}
对上述代码空间上的优化
class Solution {
public boolean canPartition(int[] nums) {
int sum = 0;
for(int num:nums){
sum+= num;
}
if(sum%2==1){
return false;
}
// 动态规划解题即从数组中挑选数字 使其满足等于target
int target = sum/2;
int length = nums.length;
// 空间上优化
boolean[] dp = new boolean[target+1];
// 初始化
dp[0] = true;
// 选择
for(int num:nums){
for(int j=target;j>=num;j--){
dp[j] = dp[j] || dp[j-num];
}
}
return dp[target];
}
}
1.2 目标和问题( / 组合问题)
题目:给定一个非负整数数组,a1, a2, …, an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。
返回可以使最终数组和为目标数 S 的所有添加符号的方法数。
示例:
输入:nums: [1, 1, 1, 1, 1], S: 3
输出:5
解释:-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3一共有5种方法让最终目标和为3。
解题思路:递归
class Solution {
int count = 0;
public int findTargetSumWays(int[] nums, int S) {
process(nums,0,0,S);
return count;
}
public void process(int[] nums,int i,int sum,int S) {
if(i==nums.length){
if(sum==S) {
count++;
}
}else{
process(nums, i+1, sum+nums[i], S);
process(nums, i+1, sum-nums[i], S);
}
}
}
解题思路2:将其转为动态规划的问题:
即X+Y = SUM; X-Y =S; 得出2X =(SUM+S);即X=(SUM+S)/2,即从里面找出整数使其等于(sum+s)/2
class Solution {
public int findTargetSumWays(int[] nums, int S) {
int sum = 0;
for(int num:nums){
sum+=num;
}
if(sum<S || (sum+S)%2==1){
return 0;
}
int target = (sum+S)/2;
int length = nums.length;
int[] dp = new int[target+1];
dp[0] = 1;
for(int num:nums){
for(int j=target;j>=num;j--){
dp[j] = dp[j] + dp[j-num];
}
}
return dp[target];
}
}
1.3 01字符构成最多的字符串(无顺序 最大最小问题)
题目:给你一个二进制字符串数组 strs 和两个整数 m 和 n 。
请你找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 。
如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。
示例 1:
输入:strs = [“10”, “0001”, “111001”, “1”, “0”], m = 5, n = 3
输出:4
解释:最多有 5 个 0 和 3 个 1 的最大子集是 {“10”,“0001”,“1”,“0”} ,因此答案是 4 。
其他满足题意但较小的子集包括 {“0001”,“1”} 和 {“10”,“1”,“0”} 。{“111001”} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。
示例 2:输入:strs = [“10”, “0”, “1”], m = 1, n = 1
输出:2
解释:最大的子集是 {“0”, “1”} ,所以答案是 2 。
class Solution {
public int findMaxForm(String[] strs, int m, int n) {
// 多维0-1背包问题
if(strs==null ||strs.length==0){
return 0;
}
// 动态规划
int[][] dp = new int[m+1][n+1];
for(String s:strs){// 每个只能用一次
int ones =0, zeros = 0;
for(char c:s.toCharArray()){
if(c=='0'){
zeros++;
}else{
ones++;
}
}
for(int i=m;i>=zeros;i--){
for(int j=n;j>=ones;j--){
dp[i][j] = Math.max(dp[i][j],dp[i-zeros][j-ones]+1);
}
}
}
return dp[m][n];
}
}
1.4 0-1背包划分三类
- 恰好target-组合问题的转移公式:
dp[i] = dp[i] + dp[i-num];
- 恰好target-True/False问题的转移公式:
dp[i] = dp[i] || dp[i-num];
- 最大target-最大最小问题的转移公式:
dp[i] = Math.max(dp[i],dp[i-num]+1)
恰好问题记得初始化dp[0] = 1 or dp[0] = true;
二、动态规划 完全背包问题 (重复使用)
2.1 零钱兑换(无顺序 最大最小的问题)
题目:给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。
你可以认为每种硬币的数量是无限的。
示例 1:
输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1
示例 2:输入:coins = [2], amount = 3
输出:-1
示例 3:输入:coins = [1], amount = 0
输出:0
示例 4:输入:coins = [1], amount = 1
输出:1
示例 5:输入:coins = [1], amount = 2
输出:2
class Solution {
public int coinChange(int[] coins, int amount) {
int[] dp = new int[amount+1];
Arrays.fill(dp, amount+1);
dp[0] = 0;
for(int coin:coins){
for(int j=coin;j<=amount;j++){
// 可重复使用
dp[j] = Math.min(dp[j],dp[j-coin]+1);
}
}
return dp[amount]>amount?-1:dp[amount];
}
}
完全平方数问题(最大最小问题)
给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, …)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。
示例 1:
输入: n = 12
输出: 3
解释: 12 = 4 + 4 + 4.
示例 2:
输入: n = 13
输出: 2
解释: 13 = 4 + 9.
class Solution {
public int numSquares(int n) {
// 动态规划
int[] dp = new int[n+1];// 默认初始化值都为0
for(int i=1;i<=n;i++) {
// 最坏的情况就是每次都为1相加
dp[i] = i;
// 对其更新
for(int j=1;i-j*j>=0;j++) {
dp[i] = Math.min(dp[i],dp[i-j*j]+1);//动态转移方程
}
}
return dp[n];
}
}
2.2 零钱兑换II(无顺序 组合问题)
题目:给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。
示例 1:
输入: amount = 5, coins = [1, 2, 5]
输出: 4
解释: 有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
示例 2:输入: amount = 3, coins = [2]
输出: 0
解释: 只用面额2的硬币不能凑成总金额3。
示例 3:输入: amount = 10, coins = [10]
输出: 1。
class Solution {
public int change(int amount, int[] coins) {
// 完全背包问题-组合问题
int[] dp = new int[amount+1];
dp[0] = 1;
for(int coin:coins){
for(int j=coin;j<=amount;j++){
// 转移方程
dp[j] = dp[j] + dp[j-coin];
}
}
return dp[amount];
}
}
2.3 单词拆分(有顺序 true/false问题)
给定一个非空字符串 s 和一个包含非空单词的列表 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。
说明:
拆分时可以重复使用字典中的单词。
你可以假设字典中没有重复的单词。
示例 1:输入: s = “leetcode”, wordDict = [“leet”, “code”]
输出: true
解释: 返回 true 因为 “leetcode” 可以被拆分成 “leet code”。
示例 2:输入: s = “applepenapple”, wordDict = [“apple”, “pen”]
输出: true
解释: 返回 true 因为 “applepenapple” 可以被拆分成 “apple pen apple”。
注意你可以重复使用字典中的单词。
示例 3:输入: s = “catsandog”, wordDict = [“cats”, “dog”, “sand”, “and”, “cat”]
输出: false
class Solution {
public boolean wordBreak(String s, List<String> wordDict) {
// 完全背包问题-有顺序 true/false问题
int target =s.length();
boolean[] dp = new boolean[target+1];
dp[0] = true;
for(int i=1;i<=target;i++){
//有顺序
for(String word:wordDict){
int len = word.length();
// 判断
if(len<=i&&word.equals(s.substring(i-len,i))){
dp[i] = dp[i] || dp[i-len];
}
}
}
return dp[target];
}
}
2.4 组合总和(IV)(有顺序/组合问题)
题目:给定一个由正整数组成且不存在重复数字的数组,找出和为给定目标正整数的组合的个数。
示例:
nums = [1, 2, 3]
target = 4所有可能的组合为:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)请注意,顺序不同的序列被视作不同的组合。
因此输出为 7。
class Solution {
public int combinationSum4(int[] nums, int target) {
// 完全背包问题-有顺序-组合问题
int[] dp = new int[target+1];
dp[0] = 1;
for(int i=1;i<=target;i++){// 背包
for(int num:nums){// 物品放在
// 进行判断
if(i>=num){
dp[i] = dp[i] + dp[i-num];
}
}
}
return dp[target];
}
}
三、背包问题整理
先判定是0-1背包问题 还是完全背包问题,以及是否考虑元素之间的顺序。
-
若不考虑元素顺序
-
0-1背包问题(元素不重复)
for num in nums: for i in range(target, nums-1, -1):
-
完全背包问题(元素可重复使用)
for num in nums: for i in range(nums, target+1):
-
-
若考虑元素顺序(目前只在完全背包问题中遇到了)
for i in range(1, target+1): for num in nums:
问题类型:
- 恰好target-组合问题的转移公式:
dp[i] = dp[i] + dp[i-num];
- 恰好target-True/False问题的转移公式:
dp[i] = dp[i] || dp[i-num];
- 最大target-最大最小问题的转移公式:
dp[i] = Math.max(dp[i],dp[i-num]+1)
恰好问题记得初始化dp[0] = 1 or dp[0] = true;
最大最小问题默认初始化的方式即可