问题描述
一个用字符数组 tasks 表示的 CPU 需要执行的任务列表。其中每个字母表示一种不同种类的任务。任务可以以任意顺序执行,并且每个任务都可以在 1 个单位时间内执行完。在任何一个单位时间,CPU 可以完成一个任务,或者处于待命状态。
然而,两个 相同种类 的任务之间必须有长度为整数 n 的冷却时间,因此至少有连续 n 个单位时间内 CPU 在执行不同的任务,或者在待命状态。
计算完成所有任务所需要的 最短时间 。
示例 1:
输入:tasks = [“A”,“A”,“A”,“B”,“B”,“B”], n = 2
输出:8
解释:A -> B -> (待命) -> A -> B -> (待命) -> A -> B
在本示例中,两个相同类型任务之间必须间隔长度为 n = 2 的冷却时间,而执行一个任务只需要一个单位时间,所以中间出现了(待命)状态。
示例 2:
输入:tasks = [“A”,“A”,“A”,“B”,“B”,“B”], n = 0
输出:6
解释:在这种情况下,任何大小为 6 的排列都可以满足要求,因为 n = 0
[“A”,“A”,“A”,“B”,“B”,“B”]
[“A”,“B”,“A”,“B”,“A”,“B”]
[“B”,“B”,“B”,“A”,“A”,“A”]
示例 3:
输入:tasks = [“A”,“A”,“A”,“A”,“A”,“A”,“B”,“C”,“D”,“E”,“F”,“G”], n = 2
输出:16
解释:一种可能的解决方案是:
A -> B -> C -> A -> D -> E -> A -> F -> G -> A -> (待命) -> (待命) -> A -> (待命) -> (待命) -> A
解决思路
假定最多的任务类型为A,共有m个,同时最小间隔为n ,那么可以转化为以下填充过程。
首先依次填充m个桶,每一行其余n个为空白,那么任务的执行过程为每一行,每一行的执行,必然满足间隔要求,因为不存在同一行中有相同的两个任务。
①当其它任务较少时,空白处填充冷却时间。
②当其它任务增多时,可以依次填充到空白处。或者延申处如FF,仍然满足间隔要求,此时因为没有冷却时间,总时间即为任务数。
因此最短的时间,即为上述两种情况取最大值,即任务数较少时采取冷却时间填充,任务数较多时,安排满。
代码实现
class Solution {
public:
int leastInterval(vector<char>& tasks, int n) {
//采取字符数组记录每个任务的剩余数量
vector<int> count(26,0);// count[0]=8 表示还有8个'A'任务
for(auto& item:tasks)
{
count[int(item-'A')]++;//计数
}
int max_= 0;
for(int i=0;i<26;i++)
{
max_=max(max_,count[i]);//找到数量最多的任务
}
int max_num = 0;
for(int i=0;i<26;i++)
{
if(max_==count[i])//找到数量最多的任务
max_num++;
}
int num2= (n+1)*(max_-1)+max_num;
return max( int(tasks.size()) ,num2 );
}
};