和为K的子数组数量:前缀和+Hash

本文介绍了一种优化算法,利用前缀和和哈希映射降低子数组和为k的问题求解时间复杂度,从O(N^3)提升至O(N)。通过实例和代码实现详细阐述了如何统计整数数组中和为给定整数k的连续子数组数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

给你一个整数数组 nums 和一个整数 k ,请你统计并返回 该数组中和为 k 的连续子数组的个数 。

示例 1:

输入:nums = [1,1,1], k = 2
输出:2

示例 2:

输入:nums = [1,2,3], k = 3
输出:2

提示:

1 <= nums.length <= 2 * 104
-1000 <= nums[i] <= 1000
-107 <= k <= 107

问题分析

由于数组中的数 有可能为负数,因此无法采取滑动窗口的求解方式,因为无法确定窗口的移动方向。

朴素做法

即枚举每一种可能,时间复杂度为O(N3)三次方级别

采取一个前缀和数组sum[],存储前面n项目的和,那么任意一个区间的子数组和为sum[j]-sum[i-1]

该方法的时间复杂度为平方级别,即枚举每一个可能的区间。

优化做法

由于前缀和数组为sum[i],那么只需要判断之前是否存在大小为sum[i]-k的前缀和即可,这样两者之间的子数组和大小为k。由于是计数问题,因此只要在向后迭代过程中,记录下 <前缀和,出现数量> 即可,采取map的方式优化这一查询。最终使得复杂度降低为O(N)级别

代码实现

class Solution {
public:
    int subarraySum(vector<int>& nums, int k) {


        int len = nums.size();

        map<int,int> mp;  // mp[k]= m 表示前面 前缀和中为K的有m组
        int count = 0;
        vector<int> pre_add(len+1,0);
        mp[0] = 1;
        for(int i=0;i<len;i++)
        {
            pre_add[i+1]=pre_add[i]+nums[i];
            if(mp[pre_add[i+1]-k]>0)  //说明前面有前缀和 = pre_add[i+1]-k 的 那么这之间的即可构成和为k
            {
                count+=mp[pre_add[i+1]-k];
            }
            mp[pre_add[i+1]]+=1; //前缀和为当前数的+1

        }

       return count;

    }
};

类似问题

求解最大的满足子数组和为k的子数组长度

其求解思路,同样采取前缀和记录的方式,此时Map<前缀和,右边标记>。记录下出现前缀和为sum[i]-k 的第一个位置的右边界。因为最大所以仅仅第一次出现时赋值

若为最小,则总是赋值覆盖(确保最晚)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值