问题描述
给你一个整数数组 nums 和一个整数 k ,请你统计并返回 该数组中和为 k 的连续子数组的个数 。
示例 1:
输入:nums = [1,1,1], k = 2
输出:2
示例 2:
输入:nums = [1,2,3], k = 3
输出:2
提示:
1 <= nums.length <= 2 * 104
-1000 <= nums[i] <= 1000
-107 <= k <= 107
问题分析
由于数组中的数 有可能为负数,因此无法采取滑动窗口的求解方式,因为无法确定窗口的移动方向。
朴素做法
即枚举每一种可能,时间复杂度为O(N3)三次方级别
采取一个前缀和数组sum[],存储前面n项目的和,那么任意一个区间的子数组和为sum[j]-sum[i-1]
该方法的时间复杂度为平方级别,即枚举每一个可能的区间。
优化做法
由于前缀和数组为sum[i],那么只需要判断之前是否存在大小为sum[i]-k的前缀和即可,这样两者之间的子数组和大小为k。由于是计数问题,因此只要在向后迭代过程中,记录下 <前缀和,出现数量> 即可,采取map的方式优化这一查询。最终使得复杂度降低为O(N)级别
代码实现
class Solution {
public:
int subarraySum(vector<int>& nums, int k) {
int len = nums.size();
map<int,int> mp; // mp[k]= m 表示前面 前缀和中为K的有m组
int count = 0;
vector<int> pre_add(len+1,0);
mp[0] = 1;
for(int i=0;i<len;i++)
{
pre_add[i+1]=pre_add[i]+nums[i];
if(mp[pre_add[i+1]-k]>0) //说明前面有前缀和 = pre_add[i+1]-k 的 那么这之间的即可构成和为k
{
count+=mp[pre_add[i+1]-k];
}
mp[pre_add[i+1]]+=1; //前缀和为当前数的+1
}
return count;
}
};
类似问题
求解最大的满足子数组和为k的子数组长度
其求解思路,同样采取前缀和记录的方式,此时Map<前缀和,右边标记>。记录下出现前缀和为sum[i]-k 的第一个位置的右边界。因为最大所以仅仅第一次出现时赋值。
若为最小,则总是赋值覆盖(确保最晚)