我们可以为二叉树 T 定义一个翻转操作,如下所示:选择任意节点,然后交换它的左子树和右子树。
只要经过一定次数的翻转操作后,能使 X 等于 Y,我们就称二叉树 X 翻转等价于二叉树 Y。
编写一个判断两个二叉树是否是翻转等价的函数。这些树由根节点 root1
和 root2
给出。
示例:
输入:root1 = [1,2,3,4,5,6,null,null,null,7,8], root2 = [1,3,2,null,6,4,5,null,null,null,null,8,7]
输出:true
解释:We flipped at nodes with values 1, 3, and 5.

提示:
- 每棵树最多有
100
个节点。 - 每棵树中的每个值都是唯一的、在
[0, 99]
范围内的整数。
解题思路
这个问题很明显通过递归来解决。我们定义函数 f ( r o o t 1 , r o o t 2 ) f(root_1,root_2) f(root1,root2)表示以 r o o t 1 root_1 root1和 r o o t 2 root_2 root2为根的结果,那么 f ( r o o t 1 , r o o t 2 ) = ( f ( r o o t 1 . l e f t , r o o t 2 . l e f t ) & f ( r o o t 1 . r i g h t , r o o t 2 . r i g h t ) ) ∣ ∣ ( f ( r o o t 1 . l e f t , r o o t 2 . r i g h t ) & f ( r o o t 1 . r i g h t , r o o t 2 . l e f t ) ) f(root_1,root_2)=(f(root_1.left, root_2.left)\&f(root_1.right,root_2.right))||(f(root_1.left, root_2.right)\&f(root_1.right,root_2.left)) f(root1,root2)=(f(root1.left,root2.left)&f(root1.right,root2.right))∣∣(f(root1.left,root2.right)&f(root1.right,root2.left))。我们接着考虑边界问题,我们判断 r o o t 1 = = N o n e ∣ ∣ r o o t 2 = = N o n e root_1==None||root_2==None root1==None∣∣root2==None,如果成立的话,我们要返回 r o o t 1 = = r o o t 2 root_1==root_2 root1==root2。我们还要判断 r o o t 1 . v a l ≠ r o o t 2 . v a l root_1.val\neq root_2.val root1.val̸=root2.val,如果成立的话,我们返回 F a l s e False False。
class Solution:
def flipEquiv(self, root1, root2):
"""
:type root1: TreeNode
:type root2: TreeNode
:rtype: bool
"""
if root1 == None or root2 == None:
return root1 == root2
if root1.val != root2.val:
return False
return (self.flipEquiv(root1.left, root2.left) and self.flipEquiv(root1.right, root2.right)) or\
(self.flipEquiv(root1.left, root2.right) and self.flipEquiv(root1.right, root2.left))
我将该问题的其他语言版本添加到了我的GitHub Leetcode
如有问题,希望大家指出!!!