C语言求最大公约数与最小公倍数

本文介绍了使用C语言求解两个数的最大公约数(GCD)和最小公倍数(LCM)的三种算法:辗转相除法、辗转相减法和穷举法。通过详细讲解和代码展示,帮助读者理解每种算法的工作原理和实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

该博文为原创文章,未经博主同意不得转载,如同意转载请注明博文出处
本文章博客地址:https://cplusplus.blog.csdn.net/article/details/105022773

求最大公约数与最小公倍数

问题分析

问题:请从键盘上输入两个数值 x,y,请用C语言求出这两个数值的最大公约数与最小公倍数。

首先,我们要想解决这道问题,就要了解什么是最大公约数与最小公倍数。

最大公因数;也称最大公约数、最大公因子,指两个或多个整数共有约数中最大的一个。

最小公倍数:两个或多个整数公有的倍数叫做它们的公倍数。-

了解了其含义,接下来就是构思算法,通常而言,求解最大公约数有三种算法,而最小公倍数的求解,我们可以很容易的推断出,最小公倍数等于两个数值的乘积除以这两个数值的最大公约数。那么接下来的算法我将在此一一进行列举和解释。

1.辗转相除法

又名欧几里德算法(Euclidean algorithm),它是已知最古老的算法, 其可追溯至公元前300年前。 ----来源百度百科

辗转:望文生义,就是翻来覆去。相除就很好理解了,就是进行除法运算。

辗转相除法的核心就是不断的让两个数做除法运算。其原理基于两个整数的最大公约数等于其中较小的数和两数的相除余数的最大公约数。

假设两数为 x,y。

先令 z = x % y ;

之后 y 赋给 x 即令 x = y ;

再将 z 赋给 y 即令 y = z;

辗转相减,其终止条件为:y 等于0时

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源代码大师

赏点狗粮吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值