【Mysql】雪花算法(Snowflake)
一、电商订单的系统要求
- 全局唯一:如果订单ID重复了,肯定要完蛋。
- 高性能:要做到高并发、低延迟。生成订单ID都成为瓶颈了,那还得了。
- 高可用:至少要做到4个9,别动不动就宕机了。
- 易用性:如果为了满足上述要求,搞了几百台服务器,复杂且难以维护,也不行。
- 数值且有序递增:数值占用的空间更小,有序递增能保证插入MySQL的时候更高性能。
- 嵌入业务含义:如果订单ID里面能嵌入业务含义,就能通过订单ID知道是哪个业务线生成的,便于排查问题。
二、传统实现方式无法满足
- 数据库主键顺序自增,每天有多少订单量被竞争对手看的一清二楚,商业机密都暴露了。
- 单机MySQL只能支持几百量级的并发,我们公司每天千万订单量,hold不住啊。
- 使用数据库集群,自增ID起始值按机器编号,步长等于机器数量。 实现百万级的并发,大概就需要2000台机器,不可取。(比如有两台机器,第一台机器生成的ID是1、3、5、7,第二台机器生成的ID是2、4、6、8。性能不行就加机器)。
- 使用号段模式。虽然并发量是上去了,但是自增ID还是不能作为订单ID。(提前获取数据库的号段,加载到内存中)
三、雪花算法生成ID
雪花算法生成ID是Long类型,长度64位。适合分布式、高性能、高可用的订单ID生成算法。
第 1 位: 符号位,暂时不用。
第 2~42 位:共41位,时间戳,单位是毫秒,可以支撑大约69年。
第 43~52 位:共10位,机器ID,最多可容纳1024台机器
第 53~64 位:共12位,序列号,是自增值,表示同一毫秒内产生的ID,单台机器每毫秒最多可生成4096个订单ID 。
代码实现:
/**
* @apiNote 雪花算法
**/
public class SnowFlake {
/**
* 起始时间戳,从2021-12-01开始生成
*/
private final static long START_STAMP = 1638288000000L;
/**
* 序列号占用的位数 12
*/
private final static long SEQUENCE_BIT = 12;
/**
* 机器标识占用的位数
*/
private final static long MACHINE_BIT = 10;
/**
* 机器数量最大值
*/
private final static long MAX_MACHINE_NUM = ~(-1L << MACHINE_BIT);
/**
* 序列号最大值
*/
private final static long MAX_SEQUENCE = ~(-1L << SEQUENCE_BIT);
/**
* 每一部分向左的位移
*/
private final static long MACHINE_LEFT = SEQUENCE_BIT;
private final static long TIMESTAMP_LEFT = SEQUENCE_BIT + MACHINE_BIT;
/**
* 机器标识
*/
private long machineId;
/**
* 序列号
*/
private long sequence = 0L;
/**
* 上一次时间戳
*/
private long lastStamp = -1L;
/**
* 构造方法
* @param machineId 机器ID
*/
public SnowFlake(long machineId) {
if (machineId > MAX_MACHINE_NUM || machineId < 0) {
throw new RuntimeException("机器超过最大数量");
}
this.machineId = machineId;
}
/**
* 产生下一个ID
*/
public synchronized long nextId() {
long currStamp = getNewStamp();
if (currStamp < lastStamp) {
throw new RuntimeException("时钟后移,拒绝生成ID!");
}
if (currStamp == lastStamp) {
// 相同毫秒内,序列号自增
sequence = (sequence + 1) & MAX_SEQUENCE;
// 同一毫秒的序列数已经达到最大
if (sequence == 0L) {
currStamp = getNextMill();
}
} else {
// 不同毫秒内,序列号置为0
sequence = 0L;
}
lastStamp = currStamp;
return (currStamp - START_STAMP) << TIMESTAMP_LEFT // 时间戳部分
| machineId << MACHINE_LEFT // 机器标识部分
| sequence; // 序列号部分
}
private long getNextMill() {
long mill = getNewStamp();
while (mill <= lastStamp) {
mill = getNewStamp();
}
return mill;
}
private long getNewStamp() {
return System.currentTimeMillis();
}
public static void main(String[] args) {
// 订单ID生成测试,机器ID指定第0台
SnowFlake snowFlake = new SnowFlake(0);
System.out.println(snowFlake.nextId());
}
}
输出结果:6836348333850624
接入非常简单,不需要搭建服务集群,。代码逻辑非常简单,,同一毫秒内,订单ID的序列号自增。同步锁只作用于本机,机器之间互不影响,每毫秒可以生成4百万个订单ID,非常强悍。
生成规则不是固定的,可以根据自身的业务需求调整。如果你不需要那么大的并发量,可以把机器标识位拆出一部分,当作业务标识位,标识是哪个业务线生成的订单ID。
四、雪花算法还有改进的空间吗?
雪花算法严重依赖系统时钟。如果时钟回拨,就会生成重复ID。
解决办法
比如美团的Leaf(美团自研一种分布式ID生成系统),为了解决时钟回拨,引入了zookeeper,原理也很简单,就是比较当前系统时间跟生成节点的时间。
有的对并发要求更高的系统,比如双十一秒杀,每毫秒4百万并发还不能满足要求,就可以使用雪花算法和号段模式相结合,比如百度的UidGenerator、滴滴的TinyId。想想也是,号段模式的预先生成ID肯定是高性能分布式订单ID的最终解决方案。