一、简介
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,由英特尔公司于1999年首次发布,现由社区积极维护和更新。它支持多种编程语言(如C++、Python、Java等),并能在Windows、Linux、macOS、Android和iOS等平台上运行。
二、主要功能
-
图像处理:滤波、边缘检测、色彩转换、几何变换(旋转/缩放)、形态学操作等。
-
视频分析:运动检测、目标跟踪、光流计算、背景减除等。
-
特征提取与匹配:SIFT、SURF、ORB、角点检测、描述符匹配等。
-
物体检测与识别:人脸/眼睛检测(Haar级联、DNN)、文字识别(OCR)、目标检测(YOLO、SSD)等。
-
3D重建:立体视觉、深度图生成、相机标定、SLAM(如ORB-SLAM)。
-
机器学习:集成SVM、KNN、随机森林等算法,支持模型训练与推理。
-
深度学习:支持加载TensorFlow、PyTorch等框架的预训练模型(如ResNet、MobileNet)。
三、核心优势
-
跨平台:支持多种操作系统和硬件(包括嵌入式设备和移动端)。
-
高效性:底层用C++优化,提供Python等高级语言接口,兼顾性能和易用性。
-
丰富的工具:包含大量预训练模型和工具(如摄像头校准、AR功能)。
-
活跃社区:文档齐全(官方教程、API文档),GitHub上贡献者众多。
四、主要应用场景
-
工业检测:产品缺陷识别、自动化分拣。
-
医疗影像:肿瘤检测、细胞分析。
-
自动驾驶:车道线检测、行人识别。
-
安防监控:人脸识别、异常行为检测。
-
增强现实(AR):虚拟物体叠加、姿态估计。
-
科研与教育:快速原型开发、算法验证。
五、扩展资料
-
官方文档:https://docs.opencv.org
-
GitHub仓库:https://github.com/opencv/opencv
-
学习教程:书籍《Learning OpenCV 4》、网站OpenCV.org的在线课程。
更多资料或技术交流,欢迎咨询
邮箱:zhaohaiyang1988@aliyun.com
微信: