【Java版】OpenCV-Sobel边缘检测和轮廓查找

一、概述


在Java环境下实现Sobel边缘检测提供了便利。

通过JavaCV,我们可以轻松地将Sobel边缘检测算法应用到各种图像处理项目中,充分发挥其优势。在图像处理领域,边缘检测是一项至关重要的任务。图像中的边缘包含了丰富的信息,例如物体的轮廓、区域的边界等。边缘检测算法有多种,其中 Sobel边缘检测算法 以其精确性和可靠性而备受关注。Sobel边缘检测算法的目标是在尽可能减少噪声影响的同时,准确地检测出图像中的边缘。

二、JavaCV环境配置


在使用JavaCV之前,需要先配置开发环境。

可以通过Maven引入JavaCV的依赖,或者手动下载Jar包。 

以下是Maven依赖添加示例:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
 
    <groupId>com.test</groupId>
    <artifactId>3d</artifactId>
    <version>1.0-SNAPSHOT</version>
 
    <dependencies>
        <dependency>
            <groupId>org.bytedeco</groupId>
            <artifactId>javacv-platform</artifactId>
            <version>1.5.9</version>
        </dependency>
 
    </dependencies>
 
</project>

三、索贝尔算子原理

Sobel算子是一阶导数的边缘检测算子,在算法实现过程中,通过3×3模板作为核与图像中的每个像素点做卷积和运算,然后选取合适的阈值以提取边缘。

一个特殊卷积所实现的功能是由卷积核的形式决定的。这个核本质上是一个大小固定、由数值参数构成的数组,数组的参考点(anchor point)通常位于数组的中心。数组的大小成为核支撑。单就技术而言,核支撑实际上仅仅由核数组的非0部分组成。对图像的卷积,首先将核的参考点定位到图像的第一个像素点,核的其余元素覆盖图像中其相对应的局部像素点。对于每一个核点,我们可以得到这个点的核值以及图像中相应图像点的值,将这些值相乘并求和,并将这个结果放在与输入图像参考点所相对应的位置。通过在整个图像上扫描卷积核,对图像的每个点重复此操作。

索贝尔算子(Sobel operator)主要用作边缘检测,在技术上,它是一阶离散性差分算子,用来运算图像亮度函数的灰度值近似值。在图像的任何一点使用此算子,将会产生对应的灰度矢量或是其法矢量。

Sobel卷积因子为:

 四、代码实现

package com.test;

import org.bytedeco.javacv.CanvasFrame;
import org.bytedeco.javacv.OpenCVFrameConverter;
import org.bytedeco.opencv.global.opencv_core;
import org.bytedeco.opencv.global.opencv_imgproc;
import org.bytedeco.opencv.opencv_core.*;

import static org.bytedeco.opencv.global.opencv_core.*;
import static org.bytedeco.opencv.global.opencv_imgcodecs.imread;
import static org.opencv.core.CvType.CV_16S;
//Sobel 通过计算图像梯度(水平和垂直方向)检测边缘。
public class ImageEdgetSobel {
    public static void main(String[] args) {
        // 加载图像
        Mat image = imread("/Users/csguo007/Desktop/images.jpeg");
        // 检查图像是否正确加载
        if (image.empty()) {
            System.out.println("Error loading image!");
            return;
        }

        //图片灰度处理
        Mat gray = new Mat();
        opencv_imgproc.cvtColor(image, gray, opencv_imgproc.COLOR_BGR2GRAY); // 转换为灰度图,因为边缘检测通常在灰度图上进行

        // 1. 计算X和Y方向的梯度
        Mat gradX = new Mat(), gradY = new Mat(), absGradX = new Mat(), absGradY = new Mat();
        opencv_imgproc.Sobel(gray, gradX, CV_16S, 1, 0, 3, 1, 0, BORDER_DEFAULT);
        opencv_imgproc.Sobel(gray, gradY, CV_16S, 0, 1, 3, 1, 0, BORDER_DEFAULT);

        // 2. 转换到8UC1格式
        opencv_core.convertScaleAbs(gradX, absGradX);
        opencv_core.convertScaleAbs(gradY, absGradY);

        //边缘,合并梯度
        Mat edges = new Mat();
        opencv_core.addWeighted(absGradX, 0.5, absGradY, 0.5, 0, edges);

       // 4. 创建一个窗口,显示结果
        CanvasFrame canvasFrame = new CanvasFrame("Image Display");
        canvasFrame.setDefaultCloseOperation(javax.swing.JFrame.EXIT_ON_CLOSE);
        canvasFrame.showImage(new OpenCVFrameConverter.ToMat().convert(edges));
    }
}

五、学习资源 

  更多学习资料,欢迎加入我们

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

常生果

喜欢我,请支持我

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值