【Java版】OpenCV-Laplacian边缘检测和轮廓查找

一、概述

在Java环境下实现Laplacian边缘检测提供了便利。

通过JavaCV,我们可以轻松地将Laplacian缘检测算法应用到各种图像处理项目中,充分发挥其优势。在图像处理领域,边缘检测是一项至关重要的任务。图像中的边缘包含了丰富的信息,例如物体的轮廓、区域的边界等。边缘检测算法有多种,其中Laplacian边缘检测算法 以其精确性和可靠性而备受关注。Laplacian边缘检测算法的目标是在尽可能减少噪声影响的同时,准确地检测出图像中的边缘。

二、JavaCV环境配置

在使用JavaCV之前,需要先配置开发环境。

可以通过Maven引入JavaCV的依赖,或者手动下载Jar包。 

以下是Maven依赖添加示例:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
 
    <groupId>com.test</groupId>
    <artifactId>3d</artifactId>
    <version>1.0-SNAPSHOT</version>
 
    <dependencies>
        <dependency>
            <groupId>org.bytedeco</groupId>
            <artifactId>javacv-platform</artifactId>
            <version>1.5.9</version>
        </dependency>
 
    </dependencies>
 
</project>

三、Laplace算子原理 

  索贝尔算子 (Sobel) 和拉普拉斯算子 (Laplace) 都是用来对图像进行边缘检测的,不同之处在于,前者是求一阶导,后者是求二阶导。
Laplace(f)=∂2f∂x2+∂2f∂y2=f(x+1,y)+f(x−1,y)+f(x,y+1)+f(x,y−1)−4f(x,y)Laplace(f)=∂2f∂x2+∂2f∂y2=f(x+1,y)+f(x−1,y)+f(x,y+1)+f(x,y−1)−4f(x,y)
  OpenCV 中对应的函数为 Laplacian

void cv::Laplacian (     
    InputArray     src,
    OutputArray    dst,
    int       ddepth,
    int       ksize = 1,
    double    scale = 1,
    double    delta = 0,
    int       borderType = BORDER_DEFAULT
)

四、代码实现

package com.test;

import org.bytedeco.javacv.CanvasFrame;
import org.bytedeco.javacv.OpenCVFrameConverter;
import org.bytedeco.opencv.global.opencv_core;
import org.bytedeco.opencv.global.opencv_imgproc;
import org.bytedeco.opencv.opencv_core.Mat;
import static org.bytedeco.opencv.global.opencv_imgcodecs.imread;
import static org.opencv.core.CvType.CV_16S;

//Laplacian 通过计算图像的二阶导数检测边缘,对噪声更敏感。
public class ImageEdgetLaplacian {
    public static void main(String[] args) {
        // 加载图像
        Mat src = imread("/Users/csguo007/Desktop/images.jpeg");
        // 检查图像是否正确加载
        if (src.empty()) {
            System.out.println("Error loading image!");
            return;
        }

        //图片灰度处理
        Mat gray = new Mat();
        opencv_imgproc.cvtColor(src, gray, opencv_imgproc.COLOR_BGR2GRAY); // 转换为灰度图,因为边缘检测通常在灰度图上进行

        // 创建目标图像Mat对象
        Mat dst = new Mat();
        int apertureSize = 3; // 可以根据需要调整大小,通常为1, 3, 5等奇数
        double scale = 1; // 缩放因子,通常为1,除非需要放大结果
        double delta = 0; // 偏移量,可以为正值或负值,用于调整结果图像的亮度或对比度

        // 应用Laplacian算子进行边缘检测
        opencv_imgproc.Laplacian(gray, dst, CV_16S, apertureSize, scale, delta,1);
        // 转换为8UC1
        opencv_core.convertScaleAbs(dst, dst);

        // 4. 创建一个窗口,显示结果
        CanvasFrame canvasFrame = new CanvasFrame("Image Display");
        canvasFrame.setDefaultCloseOperation(javax.swing.JFrame.EXIT_ON_CLOSE);
        canvasFrame.showImage(new OpenCVFrameConverter.ToMat().convert(dst));
    }
}

五、学习资源 

  更多学习资料,欢迎加入我们

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

常生果

喜欢我,请支持我

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值