一、概述
在Java环境下实现Laplacian边缘检测提供了便利。
通过JavaCV,我们可以轻松地将Laplacian缘检测算法应用到各种图像处理项目中,充分发挥其优势。在图像处理领域,边缘检测是一项至关重要的任务。图像中的边缘包含了丰富的信息,例如物体的轮廓、区域的边界等。边缘检测算法有多种,其中Laplacian边缘检测算法 以其精确性和可靠性而备受关注。Laplacian边缘检测算法的目标是在尽可能减少噪声影响的同时,准确地检测出图像中的边缘。
二、JavaCV环境配置
在使用JavaCV之前,需要先配置开发环境。
可以通过Maven引入JavaCV的依赖,或者手动下载Jar包。
以下是Maven依赖添加示例:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.test</groupId>
<artifactId>3d</artifactId>
<version>1.0-SNAPSHOT</version>
<dependencies>
<dependency>
<groupId>org.bytedeco</groupId>
<artifactId>javacv-platform</artifactId>
<version>1.5.9</version>
</dependency>
</dependencies>
</project>
三、Laplace算子原理
索贝尔算子 (Sobel) 和拉普拉斯算子 (Laplace) 都是用来对图像进行边缘检测的,不同之处在于,前者是求一阶导,后者是求二阶导。
Laplace(f)=∂2f∂x2+∂2f∂y2=f(x+1,y)+f(x−1,y)+f(x,y+1)+f(x,y−1)−4f(x,y)Laplace(f)=∂2f∂x2+∂2f∂y2=f(x+1,y)+f(x−1,y)+f(x,y+1)+f(x,y−1)−4f(x,y)
OpenCV 中对应的函数为 Laplacian
void cv::Laplacian (
InputArray src,
OutputArray dst,
int ddepth,
int ksize = 1,
double scale = 1,
double delta = 0,
int borderType = BORDER_DEFAULT
)
四、代码实现
package com.test;
import org.bytedeco.javacv.CanvasFrame;
import org.bytedeco.javacv.OpenCVFrameConverter;
import org.bytedeco.opencv.global.opencv_core;
import org.bytedeco.opencv.global.opencv_imgproc;
import org.bytedeco.opencv.opencv_core.Mat;
import static org.bytedeco.opencv.global.opencv_imgcodecs.imread;
import static org.opencv.core.CvType.CV_16S;
//Laplacian 通过计算图像的二阶导数检测边缘,对噪声更敏感。
public class ImageEdgetLaplacian {
public static void main(String[] args) {
// 加载图像
Mat src = imread("/Users/csguo007/Desktop/images.jpeg");
// 检查图像是否正确加载
if (src.empty()) {
System.out.println("Error loading image!");
return;
}
//图片灰度处理
Mat gray = new Mat();
opencv_imgproc.cvtColor(src, gray, opencv_imgproc.COLOR_BGR2GRAY); // 转换为灰度图,因为边缘检测通常在灰度图上进行
// 创建目标图像Mat对象
Mat dst = new Mat();
int apertureSize = 3; // 可以根据需要调整大小,通常为1, 3, 5等奇数
double scale = 1; // 缩放因子,通常为1,除非需要放大结果
double delta = 0; // 偏移量,可以为正值或负值,用于调整结果图像的亮度或对比度
// 应用Laplacian算子进行边缘检测
opencv_imgproc.Laplacian(gray, dst, CV_16S, apertureSize, scale, delta,1);
// 转换为8UC1
opencv_core.convertScaleAbs(dst, dst);
// 4. 创建一个窗口,显示结果
CanvasFrame canvasFrame = new CanvasFrame("Image Display");
canvasFrame.setDefaultCloseOperation(javax.swing.JFrame.EXIT_ON_CLOSE);
canvasFrame.showImage(new OpenCVFrameConverter.ToMat().convert(dst));
}
}
五、学习资源
更多学习资料,欢迎加入我们