索引知识点总结

本文介绍数据库索引的基本概念,包括索引的作用、不同类型的索引结构(如哈希表、有序数组、B+树)及其特点,并重点讲解Innodb存储引擎中的B+树索引模型,以及基于主键索引和普通索引查询的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(1)索引的出现就是为了提高数据查询效率,就像书的目录一样
(2)索引不但写在内存中,还写在硬盘中
(3)索引是存储引擎实现的
(4)索引的常见模型
        1)哈希表:以键-值(key-value)存储数据的结构
                ~~把值放在数组里,用一个哈希函数把key换算成一个确定的位置,然后把value放在数组的这个位置
                ~~哈希冲突的处理办法:链表
                ~~哈希表适用场景:只有等值查询的场景
        2)有序数组:按顺序存储。查询用二分法就可以快速查询,时间复杂度是:O(log(N))
                ~~有序数组查询效率高,更新效率低
                ~~有序数组的适用场景:静态存储引擎。
        3)搜索树:每个节点的左儿子小于父节点,父节点又小于右儿子。查询时间复杂度O(log(N)),更新时间复杂度O(log(N))
                ~~数据库存储大多不适用二叉树,因为树高过高,会适用N叉树
【Innodb的索引模型】
在Innodb中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。Innodb使用的B+树索引类型。每一个索引在InnoDB里面对应一棵B+树
(1)索引类型
        1)主键索引(聚簇索引),值存的是整行内容
        2)非主键索引(二级索引),值存的是主键内容
(2)B+ 树能够很好地配合磁盘的读写特性,减少单次查询的磁盘访问次数
【基于主键索引和普通索引的查询有什么区别】
(1)如果语句为select * from T where ID=500, 主键索引,只需要搜索ID这个B+树
(2)如果语句为select * from T where k = 5 , 普通索引,先查询k这个B+树,然后得到id的值,再搜索ID这个B+树,这个过程叫做回表
**非主键索引需要多扫描一棵索引树,所以尽量用主键索引
【索引维护】
(1)B+树为了维护索引的有序性,所以需要做索引维护
        1)页分裂、页合并。 页分裂使空间利用率降低了50%。
                ~~一个数据页满了,按照B+Tree算法,新增加一个数据页,叫做页分裂,会导致性能下降。空间利用率降低大概50%。当相邻的两个数据页利用率很低的时候会做数据页合并,合并的过程是分裂过程的逆过程
(2)自增主键的使用场景
        1)主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小
        2)业务字段做主键场景:1:只有一个索引 2:该索引必须是唯一索引 这是典型的kv场景
                由于没有其他索引,估不用考虑其它索引叶子节点大小的问题,故将该值设为主键索引

作者回复: 👍🏿

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值