《YOLOv8-Pose关键点检测》专栏介绍 & CSDN独家改进创新实战 & 专栏目录

该专栏全面介绍YOLOv8-Pose关键点检测,包括手把手教程,数据集制作,模型轻量化创新,loss优化,backbone设计等内容。通过Ghostnet、MobileNetV3等轻量化模型提升性能,并实现多种自研模型创新,适用于工业工件定位、人脸、摔倒检测等场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 YOLOv8-Pose关键点检测专栏介绍:http://t.csdnimg.cn/gRW1b

✨✨✨手把手教你从数据标记到生成适合Yolov8-pose的yolo数据集;

🚀🚀🚀模型性能提升、pose模式部署能力;

🍉🍉🍉应用范围:工业工件定位、人脸、摔倒检测等支持各个关键点检测;

指导手册

目录

1.手把手入门教程

1.1训练准备篇,数据集制作

 1.1 案列实战

 1.1 模型部署

2.模型轻量化创新

2.1  Ghostnet、G_ghost、Ghostnetv2、repghost

2.2  MobileNetV3

 2.3 轻量级自研模型创新

2.4 DCNV3 结合C2f

2.5 PConv结合C2f

2.6 轻量级Slim-Neck

2.7 ScConv结合C2f

2.8  OREPA结合C2f

2.9  Large Separable Kernel Attention结合C2f 

2.10 多尺度空洞注意力(MSDA)结合C2f

2.11 轻量高性能网络PPLCNet助力backbone 

2.12 模型轻量化创新 |轻量级可重参化EfficientRep

2.13 轻量化自研设计双卷积,修改backbone和neck,完成涨点且计算量和参数量显著下降 

3.loss优化

3.1 多loss自研设计

4.backbone创新 

4.1 EMO,结合 CNN 和 Transformer 的现代倒残差移动模块设计 | ICCV2023


实时更新中,模型轻量化创新结果如下:

layers parametersGFLOPskb mAP50mAP50-95
yolov8-pose18733794969.668420.9210.697
yolov8-C2f_GhostBottleneck-pose36225902967.753930.9290.769
yolov8-C2f_GhostBottleneckV2-pose29829271928.359890.9040.74
yolov8-C2f_repghost-pose33429597848.460800.8920.736
yolov8-C2f_g_ghostBottleneck-pose21429547448.460220.9320.71
yolov8-C2f_DCNV3-pose34128959308.659700.9260.743
yolov8-C2f_PConv-pose20530182968.561340.9250.695
yolov8-C2f_BiLevelRoutingAttention-pose20530182968.561340.9260.734
yolov8-C2f_ScConv-pose2563188264964790.9210.7
yolov8-slimneck-pose30933782008.969320.930.829
yolov8-C2f_RepvggOREPA-pose28045651928.493590.9150.677
yolov8-C2f_OREPA-pose19645625048.293030.9310.691
YOLOv8-C2f_LSKA_Attention-pose22629870008.560800.9250.652
yolov8-C2f_MultiDilatelocalAttention-pose25030044728.561010.9090.726
yolov8-pose_PPLCNet.yaml22822239246.645740.9010.752

🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀

1.手把手入门教程

1.1训练准备篇,数据集制作

 训练准备篇 | 自己数据集从labelme标注到生成yolo格式的关键点数据

 1.1 案列实战

训练实战篇 | 手部关键点检测

 1.1 模型部署

模型部署篇 | yolov8-pose.onnx python推理

🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀

2.模型轻量化创新

2.1  Ghostnet、G_ghost、Ghostnetv2、repghost

模型轻量化设计 | 引入Ghostnet、G_ghost、Ghostnetv2、repghost,进行性能对比

2.2  MobileNetV3

模型轻量化设计 | 引入MobileNetV3,轻量级骨架首选,进行性能对比

 2.3 轻量级自研模型创新

模型轻量化设计 | 模型压缩率从6842降低到1018,GFLOPs从9.6降低至2.2

2.4 DCNV3 结合C2f

模型轻量化创新 | DCNV3结合c2f | CVPR2023

2.5 PConv结合C2f

模型轻量化创新 | PConv结合c2f | CVPR2023 FasterNet

2.6 轻量级Slim-Neck

模型轻量化创新 | 轻量级Slim-Neck

2.7 ScConv结合C2f

模型轻量化创新 | ScConv结合c2f | CVPR2023

2.8  OREPA结合C2f

模型轻量化创新 | OREPA结合c2f,节省70%的显存!训练速度提高2倍! | CVPR2022

2.9  Large Separable Kernel Attention结合C2f 

模型轻量化创新 |大型分离卷积注意力模块( Large Separable Kernel Attention)结合C2f | 2023.8月最新发表

2.10 多尺度空洞注意力(MSDA)结合C2f

 模型轻量化创新 |多尺度空洞注意力(MSDA)结合C2f | 中科院一区顶刊 DilateFormer 2023.9

2.11 轻量高性能网络PPLCNet助力backbone 

模型轻量化创新 |轻量高性能网络PPLCNet助力backbone

2.12 模型轻量化创新 |轻量级可重参化EfficientRep

 YOLOv8-pose关键点检测:模型轻量化创新 |轻量级可重参化EfficientRep-CSDN博客

2.13 轻量化自研设计双卷积,修改backbone和neck,完成涨点且计算量和参数量显著下降 

YOLOv8-pose关键点检测:模型轻量化创新 | 轻量化自研设计双卷积,修改backbone和neck,完成涨点且计算量和参数量显著下降-CSDN博客

2.14 MobileNetV3结合轻量级MLCA模块, GFLOPs从9.6降低至7,参数量6842kb降低至4507kb

YOLOv8-pose关键点检测:模型轻量化创新 | :MobileNetV3结合轻量级MLCA模块, GFLOPs从9.6降低至7,参数量6842kb降低至4507kb_mobilenetv3 gflops-CSDN博客

 2.15  轻量级原创自研 | 新颖的轻量级网络,GFLOPs从9.6降低至7,参数量6842kb降低至4948kb,同时map能够提升 

YOLOv8-pose关键点检测: 轻量级原创自研 | 新颖的轻量级网络,GFLOPs从9.6降低至7,参数量6842kb降低至4948kb,同时map能够提升_yolo的gflops越小越好吗-CSDN博客

🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀

3.loss优化

3.1 多loss自研设计

Yolov8-pose关键点检测:loss系列 | 手把手教程,多loss设计提升关键点提取性能-CSDN博客

3.2  一种新的自适应阈值焦点损失函数loss,注意力分配给目标特征,助力小目标关键点涨点

Yolov8-pose关键点检测:loss优化 | 一种新的自适应阈值焦点损失函数loss,更多的注意力分配给目标特征,助力小目标关键点涨点-CSDN博客

3.3 LRM loss困难样本挖掘,提升难样本、遮挡物等检测精度  Yolov8-pose关键点检测:loss优化 | LRM loss困难样本挖掘,提升难样本、遮挡物等检测精度-CSDN博客

4.backbone创新 

4.1 EMO,结合 CNN 和 Transformer 的现代倒残差移动模块设计 | ICCV2023

YOLOv8-pose关键点检测:Backbone优化 |EMO,结合 CNN 和 Transformer 的现代倒残差移动模块设计 | ICCV2023-CSDN博客

🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀 

5.涨点创新篇

5.1 原创自研&涨点系列篇 | 空间上下文感知模块(SCAM)结合超轻量高效动态上采样DySample

Yolov8-pose关键点检测:原创自研&涨点系列篇 | 空间上下文感知模块(SCAM)结合超轻量高效动态上采样DySample-CSDN博客

 5.2 原创自研&涨点系列篇 | 一种新颖的轻量化网络,用于提升遥感图像中的小物体检测 | 2024年二区YOLOv5改进最新成果

Yolov8-pose关键点检测:原创自研&涨点系列篇 | 一种新颖的轻量化网络,用于提升遥感图像中的小物体检测 | 2024年二区YOLOv5改进最新成果-CSDN博客

5.3 SPPF创新涨点篇 | SPPELAN:SPP创新结合ELAN ,效果优于SPP、SPPF| YOLOv9 Yolov8-pose关键点检测:SPPF创新涨点篇 | SPPELAN:SPP创新结合ELAN ,效果优于SPP、SPPF| YOLOv9-CSDN博客

5.4 下采样创新篇 | 新颖的下采样ADown | YOLOv9

Yolov8-pose关键点检测:下采样创新篇 | 新颖的下采样ADown | YOLOv9-CSDN博客

5.5 特征融合涨点篇 | 广义高效层聚合网络(GELAN) | YOLOv9 YOLOv8独家原创改进:特征融合涨点篇 | 广义高效层聚合网络(GELAN) | YOLOv9-CSDN博客

5.6 PKIBlock多尺度卷积核,优势无需膨胀,即插即用小目标涨点 | CVPR2024

Yolov8-pose关键点检测:block涨点篇 | PKIBlock多尺度卷积核,优势无需膨胀,即插即用小目标涨点 | CVPR2024 PKINet 遥感图像目标检测-CSDN博客

 5.7 注意力涨点篇 | 上下文锚点注意力(CAA) | CVPR2024 

Yolov8-pose关键点检测:注意力涨点篇 | 上下文锚点注意力(CAA) | CVPR2024 PKINet 遥感图像目标检测-CSDN博客

 5.8 最新大卷积核CNN架构UniRepLKNet,UniRepLKNetBlock结合C2f  | CVPR2024

Yolov8-pose关键点检测:卷积魔改 | 最新大卷积核CNN架构UniRepLKNet,UniRepLKNetBlock结合C2f,显著提升识别精度 | CVPR2024_yolov8-pose 结构-CSDN博客

 5.9 DCNv4更快收敛、更高速度、更高性能,效果秒杀DCNv3、DCNv2等  | CVPR2024

Yolov8-pose关键点检测:卷积魔改 | DCNv4更快收敛、更高速度、更高性能,效果秒杀DCNv3、DCNv2等 ,助力检测-CSDN博客

5.10 CAMixing:卷积-注意融合模块和多尺度提取能力 | 2024年4月最新成果 Yolov8-pose关键点检测:特征融合 | CAMixing:卷积-注意融合模块和多尺度提取能力 | 2024年4月最新成果-CSDN博客

5.11 原创自研 | CVPR2024 DCNv4结合YOLOv9 SPPELAN二次创新 Yolov8-pose关键点检测:原创自研 | CVPR2024 DCNv4结合YOLOv9 SPPELAN二次创新-CSDN博客

 5.12 下采样系列 | 一种新颖的基于 Haar 小波的下采样HWD,有效涨点系列

Yolov8-pose关键点检测:下采样系列 | 一种新颖的基于 Haar 小波的下采样HWD,有效涨点系列-CSDN博客

5.13 上采样算子 | 超轻量高效动态上采样DySample,效果秒杀CAFFE

Yolov8-pose关键点检测:上采样算子 | 超轻量高效动态上采样DySample,效果秒杀CAFFE,助力小目标检测-CSDN博客5.14 大核卷积涨点系列 | Shift-ConvNets,具有大核效应的小卷积核 | 2024年最新论文 

Yolov8-pose关键点检测:大核卷积涨点系列 | Shift-ConvNets,具有大核效应的小卷积核 | 2024年最新论文-CSDN博客 

6.实战篇

6.1 基于YOLOv8的老虎姿态(Tiger-Pose)识别

基于YOLOv8的老虎姿态(Tiger-Pose)识别_yolo v8 物体检测 老虎-CSDN博客

6.2 基于YOLOv8-pose的画笔关键点(bic_markers)检测

 基于YOLOv8-pose的画笔关键点(bic_markers)检测-CSDN博客

6.3 基于YOLOv8的晶体管定位识别(pose),从数据集标注到训练手把手教程

 基于YOLOv8的晶体管定位识别(pose),从数据集标注到训练手把手教程-CSDN博客

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值