YOLOv8-Pose关键点检测专栏介绍:http://t.csdnimg.cn/gRW1b
✨✨✨手把手教你从数据标记到生成适合Yolov8-pose的yolo数据集;
🚀🚀🚀模型性能提升、pose模式部署能力;
🍉🍉🍉应用范围:工业工件定位、人脸、摔倒检测等支持各个关键点检测;
指导手册
目录
2.1 Ghostnet、G_ghost、Ghostnetv2、repghost
2.9 Large Separable Kernel Attention结合C2f
2.12 模型轻量化创新 |轻量级可重参化EfficientRep
2.13 轻量化自研设计双卷积,修改backbone和neck,完成涨点且计算量和参数量显著下降
4.1 EMO,结合 CNN 和 Transformer 的现代倒残差移动模块设计 | ICCV2023
实时更新中,模型轻量化创新结果如下:
layers | parameters | GFLOPs | kb | mAP50 | mAP50-95 | |
yolov8-pose | 187 | 3379496 | 9.6 | 6842 | 0.921 | 0.697 |
yolov8-C2f_GhostBottleneck-pose | 362 | 2590296 | 7.7 | 5393 | 0.929 | 0.769 |
yolov8-C2f_GhostBottleneckV2-pose | 298 | 2927192 | 8.3 | 5989 | 0.904 | 0.74 |
yolov8-C2f_repghost-pose | 334 | 2959784 | 8.4 | 6080 | 0.892 | 0.736 |
yolov8-C2f_g_ghostBottleneck-pose | 214 | 2954744 | 8.4 | 6022 | 0.932 | 0.71 |
yolov8-C2f_DCNV3-pose | 341 | 2895930 | 8.6 | 5970 | 0.926 | 0.743 |
yolov8-C2f_PConv-pose | 205 | 3018296 | 8.5 | 6134 | 0.925 | 0.695 |
yolov8-C2f_BiLevelRoutingAttention-pose | 205 | 3018296 | 8.5 | 6134 | 0.926 | 0.734 |
yolov8-C2f_ScConv-pose | 256 | 3188264 | 9 | 6479 | 0.921 | 0.7 |
yolov8-slimneck-pose | 309 | 3378200 | 8.9 | 6932 | 0.93 | 0.829 |
yolov8-C2f_RepvggOREPA-pose | 280 | 4565192 | 8.4 | 9359 | 0.915 | 0.677 |
yolov8-C2f_OREPA-pose | 196 | 4562504 | 8.2 | 9303 | 0.931 | 0.691 |
YOLOv8-C2f_LSKA_Attention-pose | 226 | 2987000 | 8.5 | 6080 | 0.925 | 0.652 |
yolov8-C2f_MultiDilatelocalAttention-pose | 250 | 3004472 | 8.5 | 6101 | 0.909 | 0.726 |
yolov8-pose_PPLCNet.yaml | 228 | 2223924 | 6.6 | 4574 | 0.901 | 0.752 |
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
1.手把手入门教程
1.1训练准备篇,数据集制作
训练准备篇 | 自己数据集从labelme标注到生成yolo格式的关键点数据
1.1 案列实战
1.1 模型部署
模型部署篇 | yolov8-pose.onnx python推理
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
2.模型轻量化创新
2.1 Ghostnet、G_ghost、Ghostnetv2、repghost
模型轻量化设计 | 引入Ghostnet、G_ghost、Ghostnetv2、repghost,进行性能对比
2.2 MobileNetV3
模型轻量化设计 | 引入MobileNetV3,轻量级骨架首选,进行性能对比
2.3 轻量级自研模型创新
模型轻量化设计 | 模型压缩率从6842降低到1018,GFLOPs从9.6降低至2.2
2.4 DCNV3 结合C2f
模型轻量化创新 | DCNV3结合c2f | CVPR2023
2.5 PConv结合C2f
模型轻量化创新 | PConv结合c2f | CVPR2023 FasterNet
2.6 轻量级Slim-Neck
2.7 ScConv结合C2f
模型轻量化创新 | ScConv结合c2f | CVPR2023
2.8 OREPA结合C2f
模型轻量化创新 | OREPA结合c2f,节省70%的显存!训练速度提高2倍! | CVPR2022
2.9 Large Separable Kernel Attention结合C2f
模型轻量化创新 |大型分离卷积注意力模块( Large Separable Kernel Attention)结合C2f | 2023.8月最新发表
2.10 多尺度空洞注意力(MSDA)结合C2f
模型轻量化创新 |多尺度空洞注意力(MSDA)结合C2f | 中科院一区顶刊 DilateFormer 2023.9
2.11 轻量高性能网络PPLCNet助力backbone
模型轻量化创新 |轻量高性能网络PPLCNet助力backbone
2.12 模型轻量化创新 |轻量级可重参化EfficientRep
YOLOv8-pose关键点检测:模型轻量化创新 |轻量级可重参化EfficientRep-CSDN博客
2.13 轻量化自研设计双卷积,修改backbone和neck,完成涨点且计算量和参数量显著下降
YOLOv8-pose关键点检测:模型轻量化创新 | 轻量化自研设计双卷积,修改backbone和neck,完成涨点且计算量和参数量显著下降-CSDN博客
2.14 MobileNetV3结合轻量级MLCA模块, GFLOPs从9.6降低至7,参数量6842kb降低至4507kb
2.15 轻量级原创自研 | 新颖的轻量级网络,GFLOPs从9.6降低至7,参数量6842kb降低至4948kb,同时map能够提升
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
3.loss优化
3.1 多loss自研设计
Yolov8-pose关键点检测:loss系列 | 手把手教程,多loss设计提升关键点提取性能-CSDN博客
3.2 一种新的自适应阈值焦点损失函数loss,注意力分配给目标特征,助力小目标关键点涨点
Yolov8-pose关键点检测:loss优化 | 一种新的自适应阈值焦点损失函数loss,更多的注意力分配给目标特征,助力小目标关键点涨点-CSDN博客
3.3 LRM loss困难样本挖掘,提升难样本、遮挡物等检测精度 Yolov8-pose关键点检测:loss优化 | LRM loss困难样本挖掘,提升难样本、遮挡物等检测精度-CSDN博客
4.backbone创新
4.1 EMO,结合 CNN 和 Transformer 的现代倒残差移动模块设计 | ICCV2023
YOLOv8-pose关键点检测:Backbone优化 |EMO,结合 CNN 和 Transformer 的现代倒残差移动模块设计 | ICCV2023-CSDN博客
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
5.涨点创新篇
5.1 原创自研&涨点系列篇 | 空间上下文感知模块(SCAM)结合超轻量高效动态上采样DySample
Yolov8-pose关键点检测:原创自研&涨点系列篇 | 空间上下文感知模块(SCAM)结合超轻量高效动态上采样DySample-CSDN博客
5.2 原创自研&涨点系列篇 | 一种新颖的轻量化网络,用于提升遥感图像中的小物体检测 | 2024年二区YOLOv5改进最新成果
Yolov8-pose关键点检测:原创自研&涨点系列篇 | 一种新颖的轻量化网络,用于提升遥感图像中的小物体检测 | 2024年二区YOLOv5改进最新成果-CSDN博客
5.3 SPPF创新涨点篇 | SPPELAN:SPP创新结合ELAN ,效果优于SPP、SPPF| YOLOv9 Yolov8-pose关键点检测:SPPF创新涨点篇 | SPPELAN:SPP创新结合ELAN ,效果优于SPP、SPPF| YOLOv9-CSDN博客
5.4 下采样创新篇 | 新颖的下采样ADown | YOLOv9
Yolov8-pose关键点检测:下采样创新篇 | 新颖的下采样ADown | YOLOv9-CSDN博客
5.5 特征融合涨点篇 | 广义高效层聚合网络(GELAN) | YOLOv9 YOLOv8独家原创改进:特征融合涨点篇 | 广义高效层聚合网络(GELAN) | YOLOv9-CSDN博客
5.6 PKIBlock多尺度卷积核,优势无需膨胀,即插即用小目标涨点 | CVPR2024
Yolov8-pose关键点检测:block涨点篇 | PKIBlock多尺度卷积核,优势无需膨胀,即插即用小目标涨点 | CVPR2024 PKINet 遥感图像目标检测-CSDN博客
5.7 注意力涨点篇 | 上下文锚点注意力(CAA) | CVPR2024
Yolov8-pose关键点检测:注意力涨点篇 | 上下文锚点注意力(CAA) | CVPR2024 PKINet 遥感图像目标检测-CSDN博客
5.8 最新大卷积核CNN架构UniRepLKNet,UniRepLKNetBlock结合C2f | CVPR2024
5.9 DCNv4更快收敛、更高速度、更高性能,效果秒杀DCNv3、DCNv2等 | CVPR2024
Yolov8-pose关键点检测:卷积魔改 | DCNv4更快收敛、更高速度、更高性能,效果秒杀DCNv3、DCNv2等 ,助力检测-CSDN博客
5.10 CAMixing:卷积-注意融合模块和多尺度提取能力 | 2024年4月最新成果 Yolov8-pose关键点检测:特征融合 | CAMixing:卷积-注意融合模块和多尺度提取能力 | 2024年4月最新成果-CSDN博客
5.11 原创自研 | CVPR2024 DCNv4结合YOLOv9 SPPELAN二次创新 Yolov8-pose关键点检测:原创自研 | CVPR2024 DCNv4结合YOLOv9 SPPELAN二次创新-CSDN博客
5.12 下采样系列 | 一种新颖的基于 Haar 小波的下采样HWD,有效涨点系列
Yolov8-pose关键点检测:下采样系列 | 一种新颖的基于 Haar 小波的下采样HWD,有效涨点系列-CSDN博客
5.13 上采样算子 | 超轻量高效动态上采样DySample,效果秒杀CAFFE
Yolov8-pose关键点检测:上采样算子 | 超轻量高效动态上采样DySample,效果秒杀CAFFE,助力小目标检测-CSDN博客5.14 大核卷积涨点系列 | Shift-ConvNets,具有大核效应的小卷积核 | 2024年最新论文
Yolov8-pose关键点检测:大核卷积涨点系列 | Shift-ConvNets,具有大核效应的小卷积核 | 2024年最新论文-CSDN博客
6.实战篇
6.1 基于YOLOv8的老虎姿态(Tiger-Pose)识别
基于YOLOv8的老虎姿态(Tiger-Pose)识别_yolo v8 物体检测 老虎-CSDN博客
6.2 基于YOLOv8-pose的画笔关键点(bic_markers)检测
基于YOLOv8-pose的画笔关键点(bic_markers)检测-CSDN博客
6.3 基于YOLOv8的晶体管定位识别(pose),从数据集标注到训练手把手教程