YOLOv8独家改进:轻量级原创自研 | 一种多尺度的GSConv卷积变体,轻量化的同时能够实现涨点 | 新颖的轻量级网络,yolov8s GFLOPs 28.8降低为18.1

本文介绍了针对YOLOv8的独家改进,提出了一种多尺度的GSConv卷积变体,结合Ghost模块和Bottleneck设计,实现了轻量级网络的性能提升。在保证较低GFLOPs(18.1)的同时,参数量大幅减少,并在多个数据集上验证了性能增益。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  💡💡💡本文独家改进:1)基于GSConv提出了一种Multi-Scale Ghost Conv的卷积变体,保证轻量级的同时实现涨点,2)同时结合Bottleneck,设计了一种新颖的轻量级网络。

💡💡💡在多个数据集验证能够涨点,同时跟yolov8n、yolov8s进行参数量对比:

parameters、GFLOPs都有大幅度的降低 

 parameters GFLOPs
yolov8s
### 轻量级多尺度注意力机制的实现与应用 #### 实现原理 轻量级多尺度注意力机制的核心在于通过减少参数数量的同时保持甚至提升模型性能。这种机制通常结合了通道注意力和空间注意力,能够在不显著增加计算复杂度的情况下捕获不同尺度的信息[^2]。 具体来说,轻量级多尺度注意力机制可以通过以下方式实现1. **多尺度特征提取**:采用多个卷积核大小(如3×3, 5×5等),或者通过下采样和上采样的操作获取不同尺度的特征图。 2. **注意力模块嵌入**:引入通道注意力和空间注意力模块,分别对通道维度和空间维度的重要性进行建模。例如,SENet(Squeeze-and-Excitation Network)是一种经典的通道注意力机制,它通过对每个通道的学习权重重新校准特征图[^2]。 以下是基于PyTorch的一个简单实现示例: ```python import torch.nn as nn import torch class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=8): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False) self.relu1 = nn.ReLU() self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x)))) max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) out = avg_out + max_out return self.sigmoid(out) class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1 self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) x = torch.cat([avg_out, max_out], dim=1) x = self.conv1(x) return self.sigmoid(x) class MSARBlock(nn.Module): def __init__(self, planes): super(MSARBlock, self).__init__() self.channel_attention = ChannelAttention(planes) self.spatial_attention = SpatialAttention() def forward(self, x): ca_x = self.channel_attention(x) * x sa_x = self.spatial_attention(ca_x) * ca_x return sa_x ``` 此代码定义了一个简单的多尺度注意力残差块(MSAR Block),其中包含了通道注意力和空间注意力两个部分。 --- #### 应用场景 轻量级多尺度注意力机制已经在多种计算机视觉任务中得到广泛应用,主要包括以下几个方向: 1. **图像超分辨率(Image Super-Resolution, ISR)** 多尺度注意力机制被应用于单幅图像超分辨率(Single Image Super-Resolution, SISR)任务中,以提高重建质量和效率。例如,MSAR-Net 提出了一个多尺度注意力残差网络,能够有效利用多尺度边缘信息并降低参数开销。 2. **目标检测** 在目标检测领域,尤其是针对小型物体或多尺度物体的任务中,轻量级多尺度注意力机制可以帮助更好地捕捉不同尺寸的目标特征。孙皓泽等人提出的基于轻量级网络的装甲目标快速检测方法就是一个典型例子[^3]。 3. **语义分割** 对于需要精确边界定位的任务(如语义分割),多尺度注意力机制可以增强模型对细节的关注能力,从而改善分割精度。 4. **视频处理** 在视频帧插值、去噪以及压缩伪影去除等领域,轻量级多尺度注意力同样表现出色,因为它可以在有限资源条件下提供更高的时空一致性。 --- #### 性能优势 相比传统的方法,轻量级多尺度注意力机制具有以下优: - 参数高效性:减少了冗余计算,适合部署到移动设备或嵌入式平台。 - 特征鲁棒性:通过关注重要区域,增强了模型对抗噪声的能力。 - 可扩展性强:可以根据实际需求灵活调整规模和复杂度。 尽管如此,这类模型也可能面临一些挑战,比如训练时间较长(特别是当涉及强化学习时[^1])、硬件兼容性和优化难度等问题。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值