💡💡💡创新点:基于FLOP的高效目标检测计算的神经网络架构的设计,便于嵌入式和面向移动的人工智能对象检测应用。LeYOLO-Small在COCO val上实现了38.2%的竞争性mAP分数,仅使用4.5 FLOP(G),与最新的最先进的YOLOv9-Tiny模型相比,计算负载减少了42%,同时实现了相似的精度。
收录
YOLOv8原创自研
💡💡💡创新点:基于FLOP的高效目标检测计算的神经网络架构的设计,便于嵌入式和面向移动的人工智能对象检测应用。LeYOLO-Small在COCO val上实现了38.2%的竞争性mAP分数,仅使用4.5 FLOP(G),与最新的最先进的YOLOv9-Tiny模型相比,计算负载减少了42%,同时实现了相似的精度。
收录
YOLOv8原创自研