公倍数@最小公倍数相关概念和性质定理

abstract

最小公倍数相关概念及其性质

相关概念

  • b 1 , b 2 , ⋯   , b k b_1, b_2, \cdots, b_k b1,b2,,bk都不为零的整数,如果整数 d d d是每一个 b j ( 1 ≤ j ≤ k ) b_j (1\leq j \leq k) bj(1jk)倍数,则称 d d d b 1 , b 2 , ⋯   , b k b_1, b_2, \cdots, b_k b1,b2,,bk公倍数
  • b 1 , b 2 , ⋯   , b k b_1, b_2, \cdots, b_k b1,b2,,bk公倍数中的最小正数,称为这 k k k个数的最小公倍数,记为 [ b 1 , b 2 , ⋯   , b k ] [b_1, b_2, \cdots, b_k] [b1,b2,,bk]
  • 这里 b j ∣ d b_{j}|d bjd,允许 d / b j d/b_{j} d/bj是负数或正数,但是最小公倍数 d d d必须是正数

概念比较

为什么最大公约数 ( a 1 , a 2 , ⋯ , a n ) (a_{1},a_{2},\cdots,a_{n}) (a1a2an)的定义中要求 a 1 , a 2 , ⋯ , a n a_{1},a_{2},\cdots,a_{n} a1a2an不全为零?

  • 0是任何数的倍数,也就是任何数都是0的约数,对于全0的 n n n个数,不存在最大公约数

为什么最小公倍数 [ b 1 , b 2 , ⋯ , b m ] [b_{1},b_{2},\cdots,b_{m}] [b1b2bm]的定义中要求 b 1 , b 2 , ⋯ , b m b_{1},b_{2},\cdots,b_{m} b1b2bm都不为零?

  • 0不作为任何数的约数,任何数乘以0都是0(0的任何倍数都是0),对于包含0的 n n n个数,不存在最小公倍数

负数和正数的公倍数

由于整数 b ≠ 0 b\neq0 b=0与$\left | b \right | $的倍数相同,故有 [ b 1 , b 2 , … , b m ] = [ ∣ b 1 ∣ , ∣ b 2 ∣ , … , ∣ b m ∣ ] . \left [ b_{1} , b_{2} ,…,b_{m}\right ] =\left [ \left | b_{1} \right | ,\left | b_{2} \right | ,…,\left | b_{m} \right |\right ] . [b1,b2bm]=[b1,b2