构建本地知识库:基于 LangChain 和 Ollama 的 RAG 实现教程

构建本地知识库:基于 LangChain 和 Ollama 的 RAG 实现教程

简介

在这个教程中,我们将学习如何构建一个本地运行的知识库系统,它能够让用户上传 PDF 或 TXT 文档,并通过自然语言与文档内容进行交互。这个系统使用了 RAG(检索增强生成)技术,结合了 LangChain、Ollama 和 Streamlit 等现代工具,实现了一个完整的本地知识库解决方案。

技术栈

  • LangChain: 用于构建 LLM 应用的框架
  • Ollama: 本地运行的 LLM 模型服务
  • FastEmbed: 高效的文本嵌入模型
  • Chroma: 向量数据库
  • Streamlit: Web 界面框架

系统架构

该系统主要包含以下几个核心组件:

  1. 文档处理器: 支持 PDF 和 TXT 文件的加载和处理
  2. 文本分割器: 将文档分割成适当大小的块
  3. 向量存储: 使用 Chroma 存储文档块的向量表示
  4. 检索器: 基于相似度搜索相关文档块
  5. LLM 接口: 与 Ollama 模型交互生成回答
  6. Web 界面: 用户友好的交互界面

实现步骤

1. 环境配置

首先,创建一个新的 Python 环境并安装必要的依赖:

# 创建虚拟环境
python -m venv .venv

# 激活环境
# Windows:
.venv\Scripts\activate
# Linux/Mac:
source .venv/bin/activate

# 安装依赖
pip install -r requirements-windows.txt

requirements-windows.txt

aiohappyeyeballs>=2.4.0
aiohttp>=3.10.5
aiosignal>=1.3.1
altair>=5.4.1
annotated-types>=0.7.0
anyio>=4.6.0
asgiref>=3.8.1
attrs>=24.2.0
backoff>=1.11.1
bcrypt>=4.2.0
blinker>=1.8.2
build>=1.2.2
cachetools>=5.5.0
certifi>=2024.8.30
charset-normalizer>=3.3.2
chroma-hnswlib>=0.7.6
chromadb>=0.5.7
click>=8.1.7
coloredlogs>=15.0.1
dataclasses-json>=0.6.7
Deprecated>=1.2.14
distlib>=0.3.8
durationpy>=0.7
fastapi>=0.115.0
fastembed>=0.3.6
filelock>=3.16.1
flatbuffers>=24.3.25
frozenlist>=1.4.1
fsspec>=2024.9.0
gitdb>=4.0.11
GitPython>=3.1.43
google-auth>=2.35.0
googleapis-common-protos>=1.65.0
grpcio>=1.66.1
h11>=0.14.0
httpcore>=1.0.5
httptools>=0.6.1
httpx>=0.27.2
huggingface-hub>=0.25.0
humanfriendly>=10.0
idna>=3.10
importlib_metadata>=8.4.0
importlib_resources>=6.4.5
Jinja2>=3.1.4
jsonpatch>=1.33
jsonpointer>=3.0.0
jsonschema>=4.23.0
jsonschema-specifications>=2023.12.1
langchain>=0.1.12
langchain-community>=0.0.27
langchain-core>=0.1.30
langsmith>=0.1.27
markdown-it-py>=3.0.0
MarkupSafe>=2.1.5
marshmallow>=3.20.2
mdurl>=0.1.2
monotonic>=1.6
mpmath>=1.3.0
multidict>=6.0.5
mypy-extensions>=1.0.0
numpy>=1.26.4
oauthlib>=3.2.2
onnxruntime>=1.17.1
openai>=1.12.0
opentelemetry-api>=1.23.0
opentelemetry-instrumentation>=0.44b0
opentelemetry-semantic-conventions>=0.44b0
overrides>=7.7.0
packaging>=23.2
pandas>=2.2.0
Pillow>=10.2.0
pip>=24.0
platformdirs>=4.2.0
posthog>=3.4.1
protobuf>=4.25.3
pulsar-client>=3.4.0
pyarrow>=15.0.0
pydantic>=2.6.1
pydantic_core>=2.16.2
pydeck>=0.8.1b0
Pygments>=2.17.2
PyJWT>=2.8.0
pyparsing>=3.1.1
python-dateutil>=2.8.2
python-dotenv>=1.0.1
pytz>=2024.1
PyYAML>=6.0.1
referencing>=0.33.0
regex&
### 构建本地知识库问答系统的概述 为了实现在个人电脑上基于LangChainOllama构建本地知识库问答系统的目标,整个流程可以分为几个主要部分:环境配置、数据收集与预处理、模型加载以及应用开发。 #### 环境配置 确保安装必要的软件包支持工具。对于Python项目来说,创建虚拟环境是一个良好的开端。接着,通过pip或其他方式安装所需的依赖项,比如`langchain``ollama`等特定版本的库[^1]。 ```bash python -m venv myenv source myenv/bin/activate # Linux/MacOS myenv\Scripts\activate # Windows pip install langchain ollama ``` #### 数据收集与预处理 针对目标领域搜集相关文档资料作为训练集的一部分。这些材料可能来自内部文件、公开资源或是其他合法渠道获取的信息。之后,需对原始文本做清洗工作,去除噪声并转换成适合输入给大模型的形式[^2]。 #### 加载预训练的大规模语言模型 借助于Ollama提供的API接口,在本地环境中加载已有的大规模预训练语言模型实例。这一步骤允许开发者快速启动原型测试而无需自行训练复杂的神经网络结构。 ```python from ollama import load_model model = load_model('path_to_pretrained_ollama') ``` #### 应用程序逻辑设计 最后一步涉及编写具体的应用层代码来连接上述组件。这里将以简单的命令行界面为例展示如何集成LangChain框架中的检索增强生成(Retrieval-Augmented Generation, RAG)技术到最终产品中去。 ```python import langchain as lc def answer_question(question): docs = lc.search_documents(question) # 使用LangChain搜索最相关的文档片段 context = " ".join([doc.content for doc in docs]) prompt = f"Given the following context:\n{context}\nAnswer this question: {question}" response = model.generate(prompt=prompt) return response.generated_text.strip() ``` 以上就是使用LangChainOllama构建本地知识库问答系统的简要介绍。此方案不仅能让用户深入了解大型语言模型的实际应用场景,还能帮助掌握更多关于自然语言处理的知识技术细节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老大白菜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值