核心定义
MCP(Model Context Protocol)是专为LLM(大语言模型)应用设计的标准化协议,通过安全可控的方式向AI应用暴露数据和功能。主要提供以下能力:
- 标准化的上下文管理
- 安全的功能调用接口
- 跨平台的数据交互协议
- 可审计的操作日志记录
MCP三大原语
MCP Server 提供了三种核心原语,每种原语都有其特定的用途和特点:
- Tool(工具):服务器公开可执行的函数,供客户端和LLM调用,实现主动操作和数据写入。
- Resource(资源):服务器提供的只读数据,如文件、数据库记录、图片等,供客户端或应用获取上下文。
- Prompt(提示模板):可重用的交互模板,引导或标准化与LLM的对话流程。
技术架构
+----------------+ +----------------+ +----------------+
| MCP Client | ← → | MCP Server | ← → | MCP Host |
+----------------+ +----------------+ +----------------+
↓ ↓ ↓
+----------------+ +----------------+ +----------------+
| LLM Application | | API Endpoints | | Data Sources |
+----------------+ +----------------+ +----------------+
通信方式
MCP服务端支持两种与客户端的数据通信方式:
1. 标准输入输出(stdio)
- 原理:客户端将服务端作为子进程启动,通过标准输入输出进行数据交换。
- 适用场景:本地运行,低延迟、高效率,适合快速响应的本地应用。
2. 基于HTTP的服务器推送事件(SSE)
- 原理:客户端与服务端通过HTTP协议通信,利用SSE实现服务端向客户端实时推送数据。
- 适用场景:分布式或远程部署,适合跨物理位置的服务集成。
开发指南
Python环境管理与FastMCP安装
推荐使用uv进行Python环境管理:
- 安装uv(Windows):
powershell -