《前后端面试题
》专栏集合了前后端各个知识模块的面试题,包括html,javascript,css,vue,react,java,Openlayers,leaflet,cesium,mapboxGL,threejs,nodejs,mangoDB,SQL,Linux… 。
文章目录
- 一、本文面试题目录
-
-
- 71. 什么是PyTorch的JIT(Just-In-Time)编译?它有什么作用?
- 72. 如何使用`torch.jit.trace()`和`torch.jit.script()`导出模型?
- 73. PyTorch的分布式训练(Distributed Training)有什么作用?如何实现?
- 74. `torch.distributed`模块的核心概念(如`rank`、`world_size`)是什么?
- 75. 什么是数据并行(Data Parallelism)和模型并行(Model Parallelism)?它们的适用场景是什么?
- 76. `nn.DataParallel`和`nn.parallel.DistributedDataParallel`有何区别?
- 77. PyTorch中的随机数种子(Random Seed)如何设置?为什么需要固定种子?
- 78. 什么是ONNX(Open Neural Network Exchange)?PyTorch如何导出模型到ONNX格式?
- 79. PyTorch Mobile的作用是什么?如何将PyTorch模型部署到移动设备?
- 80. 如何使用PyTorch进行量化(Quantization)?量化的目的是什么?
- 81. PyTorch的`torch.utils.checkpoint`模块有什么作用?如何使用?
- 82. 什么是自动混合精度(AMP)?`torch.cuda.amp`模块如何使用?
- 83. 如何在PyTorch中实现模型的剪枝(Pruning)?
- 84. PyTorch与C++/CUDA如何交互?如何编写自定义的C++扩展?
- 85. 什么是TorchScript?它与JIT编译有什么关系?
-
- 二、120道PyTorch面试题目录列表
一、本文面试题目录
71. 什么是PyTorch的JIT(Just-In-Time)编译?它有什么作用?
-
原理说明:
PyTorch的JIT(即时编译)是一种将PyTorch代码转换为可序列化、可优化的中间表示(IR)的工具。它能将动态计算图转换为静态表示,兼具PyTorch的灵活性和静态图的高效性。
作用包括:- 提高模型执行效率(通过静态优化,如算子融合、常量折叠)。
- 支持模型序列化(保存为.