Category Archives: Security

Dropping some TLS laggards

In the curl project we have a long tradition of supporting a range of different third party libraries that provide similar functionality. The person who builds curl needs to decide which of the backends they want to use out of the provided alternatives. For example when selecting which TLS library to use.

This is a fundamental and appreciated design principle of curl. It allows different users to make different choices and priorities depending on their use cases.

Up until May 2025, curl has supported thirteen different TLS libraries. They differ in features, footprint, speed and licenses.

Raising the bar

We implicitly tell the user that you can use one of the libraries from this list to get good curl functionality. The libraries we support have met our approval. They passed the tests. They are okay.

As we support a large number of them, we can raise the bar and gradually increase the requirements we set for them to remain approved. For the good of our users. To make sure that the ones we support truly are good quality choices to build upon – ideally for years to come.

TLS 1.3

The latest TLS version is called TLS 1.3 and the corresponding RFC 8443 was published in August 2018, almost seven years ago. While there are no known major problems or security issues with the predecessor version 1.2, a modern TLS library that has not yet implemented and provide support for TLS 1.3 is a laggard. It is behind.

We take this opportunity to raise the bar and say that starting June 2025, curl only supports TLS libraries that supports TLS 1.3 (in their modern versions). The first curl release shipping with this change is the pending 8.15.0 release, scheduled for mid July 2025.

This move has been announced, planned and repeatedly communicated for over a year. It should not come as a surprise, even if I have no doubt that this will be considered a such by some.

This makes sure that users and applications that decide to lean on curl are more future-proof. We no longer recommend using one of the laggards.

Removed

This action affects these two specific TLS backends:

  • BearSSL
  • Secure Transport

BearSSL

This embedded and small footprint focused library is probably best replaced by wolfSSL or mbedTLS.

Secure Transport

This is a native library in Apple operating systems that has been deprecated by Apple themselves for a long time. There is no obvious native replacement for this, but we probably recommend either wolfSSL or an OpenSSL fork. Apple themselves have used libreSSL for their curl builds for a long time.

The main feature user might miss from Secure Transport that is not yet provided by any other backend, is the ability to use the native CA store on the Apple operating systems – iOS, macOS etc. We expect this feature to get implemented for other TLS backends soon.

Network framework

On Apple operating systems, there is a successor to Secure Transport: the Network framework. This is however much more than just a TLS layer and because of their design decisions and API architecture it is totally unsuitable for curl’s purposes. It does not expose/use sockets properly and the only way to use it would be to hand over things like connecting, name resolving and parts of the protocol management to it, which is totally unacceptable and would be a recipe for disaster. It is therefore highly unlikely that curl will again have support for a native TLS library on Apple operating systems.

Eleven remaining TLS backends in curl

In the order we added them.

  1. OpenSSL
  2. GnuTLS
  3. wolfSSL
  4. SChannel
  5. libressl – an OpenSSL fork
  6. BoringSSL – an OpenSSL fork
  7. mbedTLS
  8. AmiSSL – an OpenSSL fork
  9. rustls
  10. quictls – an OpenSSL fork
  11. AWS-LC – an OpenSSL fork

Eight removed TLS backends

With these two new removals, the set of TLS libraries we have removed support for over the years are, in the order we removed them:

  1. QsoSSL
  2. axTLS
  3. PolarSSL
  4. MesaLink
  5. NSS
  6. gskit
  7. BearSSL
  8. Secure Transport

Going forward

Currently we have no plans for removing support for any other TLS backends, but we will of course reserve ourselves the right to do so when we feel the need, for the good of the project and our users.

We similarly have no plans to add support for any additional TLS libraries, but if someone would bring such work to the project for one of the few remaining quality TLS libraries that exist that curl does not already support, then we would most probably welcome such an effort.

CVSS is dead to us

CVSS is short for Common Vulnerability Scoring System and is according to Wikipedia a technical standard for assessing the severity of vulnerabilities in computing systems.

Typically you use an online CVSS calculator, click a few checkboxes and radio buttons and then you magically get a number from 0 to 10. There are also different versions of CVSS.

Every CVE filed to MITRE is supposed to have a CVSS score set. CVEs that are registered that lack this information will get “amended” by an ADP (Authorized Data Publishers) that think of it as their job. In the past NVD did this. Nowadays CISA does it. More on this below.

Problems

Let’s say you write a tool and library that make internet transfers. They are used literally everywhere, in countless environments and with an almost impossible number of different build combinations, target operating systems and CPU architectures. Let’s call it curl.

When you find a theoretical security problem in this product (theoretical because most problems are never actually spotted exploited), how severe is it? The CVSS calculation has a limited set of input factors that tend to result in a fairly high number for a network product. What if we can guess that the problem is only used by a few or only affects an unusual platform? Not included.

The CVSS scoring is really designed for when you know exactly when and how the product is used and how an exploit of the flaw affects it. Then it might at least work. For a generic code base shipped in a tarball that runs in more than twenty billion installations it does less so.

If you look around you can easily find numerous other (and longer) writings about the problems and challenges with CVSS. We are not alone thinking this.

CVSS is used

At the same time, it seems the popularity of security scanners have increased significantly over the last few years. The kind of products that scan your systems checking for vulnerable products and show you big alerts and warnings when they do.

The kind of programs that looks for a product, figures out a version number and then shouts if it finds a registered CVE for that product and version with a CVSS score above a certain threshold.

This kind of product that indirectly tricks users to deleting operating system components to silence these alerts. We even hear of people who have contractual agreements that say they must address these alerts within N number of business days or face consequences.

Just days ago I was contacted by users on macOS who were concerned about a curl CVE that their scanner found in the libcurl version shipped by Apple. Was their tool right or wrong? Do you think anyone involved in that process actually can tell? Do you think Apple cares?

curl skips CVSS

In the curl project we have given up trying to use CVSS to get a severity score and associated severity level.

In the curl security team we instead work hard to put all our knowledge together and give a rough indication about the severity by dividing it into one out of four levels: low, medium, high, critical.

We believe that because we are not tied to any (flawed and limited) calculator and because we are intimately familiar with the code base and how it is used, we can assess and set a better security severity this way. It serves our users better.

Part of our reason to still use these four levels is that our bug-bounty‘s reward levels are based on the level.

As a comparison, The Linux kernel does not even provide that course-grained indication, based on similar reasoning to why we don’t provide the numeric scores.

This is not treated well

The curl project is a CNA, which means that we reserve and publish our own CVE Ids to the CVE database. There is no middle man interfering and in fact no one else can file curl CVE entries anymore without our knowledge and us having a saying about it. That’s good.

However, the CVE system itself it built on the idea that every flaw has a CVSS score. When someone like us creates CVE entries without scores, that leaves something that apparently is considered a gaping sore in the system that someone needs to “fix”.

Who would “fix” this?

Authorized Data Publishers

A while ago this new role was added to the CVE ecosystem called ADPs. This job was previously done a little on the side but roughly the same way by NVD who would get all the CVEs, edit them and then publish them all themselves to the world with their additions. And the world really liked that and used the NVD database.

However NVD kind of drowned themselves by this overwhelming work and it has instead been replaced by CISA who is an “ADP” and is thus allowed to enrich CVE entries in the database that they think need “improvement”.

The main thing they seem to detect and help “fix” is the lack of CVSS in published CVE entries. Like every single curl CVE because we don’t participate in the CVSS dance.

No clues but it must get a score

Exactly in the same way this system was broken before when NVD did it, this new system is broken when CISA does it.

I don’t have the numbers for exactly how many CVE entries they do this “enrichment” for (there were over 40,000 CVEs last year but a certain amount of them had CVSS filed in by their CNAs). I think it is safe to assume that the volume is high and since they are filed for products in all sorts of categories it is certainly impossible for CISA to have experts in the many products and technologies each CVE describes and affects.

So: given limited time and having no real clue what the issues are about, the individuals in this team click some buttons in a CVSS calculator, get a score, a severity and then (presumably) quickly move on the next issue. And the next. And the next. In a never-ending stream of incoming security issues.

How on earth does anyone expect them to get this right? I mean sure, in some or perhaps even many cases they might get close because of luck, skill or something but the system is certainly built in a way that just screams: this will end up crazy wrong ever so often.

A recent example

In the end of 2024 I was informed by friends that several infosec related websites posted about a new curl-related critical security problem. Since we have not announced any critical security problems since 2013, that of course piqued my interest so I had a look.

It turned out that CISA had decided that CVE-2024-11053 should be earned a CVSS 9.1 score: CRITICAL, and now scanners and news outlets had figured that out. Or would very soon.

The curl security team had set the severity to LOW because of the low risk and special set of circumstances that are a precondition for the problem. Go read it yourself – the fine thing with CVEs for Open Source products is that the source, the fix and everything is there to read and inspect as much as we like.

The team of actual experts who knows this code and perfectly understands the security problem says LOW. The team at CISA overrides that and insists that are all wrong and that this problem risks breaking the Internet. Because we apparently need a CVSS at all costs.

A git repository

One positive change that the switch to CISA from NVD brought is that now they host their additional data in GitHub repository. Once I was made aware of this insane 9.1 score, I took time of my Sunday afternoon with my family and made a pull-request there urging them to at least lower the score to 5.3. That was a score I could get the calculator to tell me.

I wanted to have this issue sorted and stomped down as quickly as possible to if possible reduce the risk that security scanners everywhere would soon start alerting on this and we would get overloaded with queries from concerned and worried users.

It’s not like CISA gets overloaded by worried users when they do this. Their incompetence here puts a load on no one else but the curl project. But sure, they got their CVSS added.

After my pull request it took less than ninety minutes for them to update the curl records. Without explanation, with no reference to my PR, they now apparently consider the issue to be CVSS 3.4.

I’m of course glad it is no longer marked critical. I think you all understand exactly how arbitrary and random this scoring approach is.

A problem with the initial bad score getting published is of course that a certain number of websites and systems are really slow or otherwise bad at updating that information after they initially learned about the critical score. There will linger websites out there speaking about this “critical” curl bug for a long time now. Thanks CISA!

Can we avoid this?

In the curl security team we have discussed setting “fixed” (fake) scores on our CVE entries just in order to prevent CISA or anyone else to ruin them, but we have decided not to since that would be close to lying about them and we actually work fiercely to make sure we have everything correct and meticulously described.

So no, since we do not do the CVSS dance, we unfortunately will continue having CISA do this to us.

Stop mandatory CVSS?

I am of course advocating strongly within the CNA ecosystem that we should be able to stop CISA from doing this, but I am just a small cog in a very large machine. A large machine that seems to love CVSS. I do not expect to have much success in this area anytime soon.

And no, I don’t think switching to CVSS 4.0 or updates to this system is ultimately going to help us. The problem is grounded in the fact that a single one-dimensional score is just too limited. Every user or distributor of the project should set scores for their different use cases. Maybe even different ones for different cases. Then it could perhaps work.

But I’m not in this game for any quick wins. I’m on the barricades for better (Open Source) security information, and to stop security misinformation. Ideally for the wider ecosystem, because I think we are far from alone in this situation.

The love of CVSS is strong and there is a lot of money involved based on and relying on this.

Minor update

After posting this, I got confirmation that the Go Security team does what we do and has the same problems. Filippo Valsorda told me on Bluesky. Just to show that this is a common pattern.

Update two

Some fourteen hours after I posted this blog post and it spread around the world, my enrichment PR to CISA I mentioned above got this added comment:

While it is good to be recognized, it does not feel like it will actually address the underlying problem here.

Update three

What feels like two hundred persons have pointed out that the CVSS field is not mandatory in the CVE records. It is a clarification that does not add much. The reality is that users seem to want the scores so bad that CISA will add CVSS nonetheless, mandatory or not.

Secure Transport support in curl is on its way out

In May 2024 we finally decided that maybe the time has come for curl to drop support of older TLS libraries. Libraries that because they don’t support the modern TLS version (1.3) for many users are maybe not suitable to build upon for the future. We gave the world 12 months to adapt or to object. More than half of that time has passed.

This means that after May 2025, we intend to drop support for Secure Transport and BearSSL unless something changes drastically that makes us reconsider.

This blog post is an attempt to make everyone a little more aware and make sure that those who need to, prepare appropriately.

Secure Transport

Secure Transport is a quite a horrible name, but it is still the name of a TLS library written by Apple, shipped as a component for macOS and all the different flavors of iOS. It has been supported by curl since 2012 but as of a few years back it is considered deprecated and “legacy” by Apple themselves. Secure Transport only supports TLS up to but not later than 1.2.

Once upon the time Apple shipped curl built against Secure Transport with macOS but they switched over to LibreSSL several years ago.

I hear two primary reasons mentioned why people still like using libcurl/Secure Transport on iOS:

  1. It saves them from having to use and bundle a separate third party library that also adds to the footprint.
  2. It gives them easy and convenient use of the iOS certificate store instead of having to manage a separate one..

Network Framework

Continuing on their weird naming trajectory, the thing that Apple recommends the world to use instead of Secure Transport is called Network Framework.

Due to completely new paradigms and a (to me at least) funny way to design their API, it is far from straight-forward to write a backend for curl that uses the Network Framework for TLS. We have not even seen anyone try. Apple themselves certainly seem to be fine to simply not use their own TLS for their curl builds.

I am not sure it is even sensible to try to use the Network Framework in curl.

Options

Without Secure Transport and no prospect of seeing Network Framework support, users of libcurl on macOS and iOS flavors need to decide on what to do next.

I can imagine that there are a few different alternatives to select from.

  1. Stick to an old libcurl. At first an easy and convenient choice, but it will soon turn out to be a narrow path with potential security implications going forward.
  2. Maintain a custom patch. The TLS backends are fairly independent so this is probably not an impossible task, but still quite a lot of work that also takes a certain amount of skill.
  3. Switch off from libcurl. Assuming you find an alternative that offers similar features, stability, portability, speed and that supports the native cert storage fine. Could mean quite some work.
  4. Use libcurl with another TLS library. This is then by itself two sub-categories. A) The easiest route is to accept that you need to maintain a separate CA store and then you can do this immediately and you can use a TLS library that supports the latest standards and that is well supported. B) Use a TLS library that supports use of the native iOS cert store. I believe maybe right now wolfSSL is the only one that does this out of the box, but there is also the option to pay someone or write the code to add such features to another curl TLS backend.
  5. Some other approach

Post removal

After this removed support of two libraries from curl, there is still support for ten different TLS libraries. There should be an adequate choice for everyone – and there is nothing stopping us from adding support for future newcomers on the scene.

Protests are listened to

Part of the deprecation process in curl is that we listen to what possible objections people might have in the time leading up to the actual future date when the code is cut out. Given a proper motivation a deprecation decision can be canceled or at least postponed.

A twenty-five years old curl bug

I have talked about old curl bugs before, but now we have a new curl record.

When we announced the security flaw CVE-2024-11053 on December 11, 2024 together with the release of curl 8.11.1 we fixed a security bug that was introduced in a curl release 9039 days ago. That is close to twenty-five years.

The previous record holder was CVE-2022-35252 at 8729 days.

Now at 161 reported CVEs, the median time a security problem has existed in curl until fixed is 2583 days, a little over seven years.

Age

We know the age of every single curl security problem because every time we have a confirmed one, I spend a significant time and effort digging through the source code history to figure out in which exact commit the problem was introduced.

(This is also how we know that almost every CVE we have ever announced was introduced by my mistakes.)

What’s Wrong?

I don’t think anyone is doing anything wrong here. I think it illustrates the difficulty and challenges involved. There are a lot of people looking at curl code all the time. We run tests and analyzers on the code, all the time. In fact, in November 2024 alone, we had CI jobs running on GitHub alone at 9.17 CPU days per day. Meaning that on average more than nine machines were running curl tests and builds to help us verify that it works as intended.

Apart from that, we of course have all the human individual testers, security researchers and the Google OSS-Fuzz project that is fuzzing curl non-stop and has been doing so for the last 6-7 years.

Security is hard. I mean really really hard.

I have no immediate ideas how to find the next such bug other than the plain old: add more test cases for scenarios and setups not previously tested. That is hard, difficult and quite frankly quite boring work that nobody in particular wants to do nor fund someone else to do.

Enough eyeballs

I think we all agree by now that not all bugs are shallow. Or perhaps we can’t ever truly get enough eyeballs. Or maybe the saying works, just that it needs an addendum

Given enough eyeballs and time, all bugs are shallow

Learn from each mistake

It is often said, and it is true, that you learn from mistakes. The question is only what exactly to learn from each and every reported security vulnerability. Each new one always feels like a unique stupid mistake that was a one-off that surely will not happen again because that situation is now gone and we have no other like that.

Not a C mistake

Let me also touch this subject while talking security problems. This bug, the oldest so far in curl history, was a plain logic error and would not have been avoided had we used another language than C.

Otherwise, about 40% of all security problems in curl can be blamed on us using C instead of a memory-safe language. 50% of the high/critical severity ones.

Almost all of those C mistakes were done before there even existed a viable alternative language – if that even exists now.

Graphs

I decided to not sprinkle graph images in the post this time. You can find data and graphs for all my claims in here in the curl dashboard.

Sad update

After intensive bisecting, it turns out this bug was incorrectly believed to have been introduced in a certain commit, while in fact it was introduced much later. As of January 7th 2025, we have updated the metadata for this CVE and now it is no longer the oldest bug fixed in curl…