文献记录(part15)--面向高维数据的聚类算法研究

随着数据维度增加,传统聚类算法面临性能下降、距离度量失效及稳定性差等问题。研究聚焦于特征选择、子空间聚类和聚类集成,提出基于结构保持的特征选择、柯西损失函数的子空间聚类、块对角结构约束和集覆盖的聚类集成算法,以应对噪声、数据结构和子类信息的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习笔记,仅供参考,有错必究


面向高维数据的聚类算法研究


摘要


随着信息技术的发展,数据的维度在不断增加,传统的聚类算法将面临以下挑战和问题:

  • 高维数据包含大量冗余的、不相干的信息,数据之间的差异性可能是由部分特征子集导致的,直接对高维数据进行聚类,会降低算法的性能;
  • 高维数据通常存在于多个低维子空间中传统的距离度量方式不再适用于高维数据;
  • 传统的聚类算法本身就存在稳定性较差的问题,对于高维数据,更是难以满足高稳定性的需求.

因此,研究面向高维数据的聚类算法是一项非常有意义并且有挑战的课题。近年来,学者们主要从特征选择、子空间聚类、聚类集成三个方面开展了高维数据聚类算法的研究,提出了许多有效的聚类算法,但仍存在以下问题:

  • 对特征之间的相关性利用不充分;
  • 忽略了噪声以及表达矩阵的结构特性对子空间聚类的影响;
  • 忽略了初始聚类结果所包含子类之间的结构信息和判别性信息.

针对上述问题,本文从四个方面开展了高维数据聚类算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GUI Research Group

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值