数据资产化:将数据变成可产生经济价值的资源。
资产是指由企业过去的交易或事项形成的、由企业拥有或者控制的、预期会给企业带来经济利益的资源。数据资源化是数据资产化(价值化)的首要阶段,包括数据采集、数据整理、数据聚合、数据分析等。数据采集是根据需要收集数据的过程,数据整理包括数据标注、清洗、脱敏、脱密、标准化、质量监控等,数据聚合包括数据传输、数据存储、数据集成汇聚等,数据分析是为各种决策提供支撑而对数据加以详细研究和概括总结的过程。
数据资源化框架图(资料来源:中国信息通信研究院)
全球每年将产生巨量的数据
根据国际数据公司(IDC)发布的《数据时代 2025》显示,2025 年全球每年产生的数据将从 2018 年的 33ZB( 1ZB=10 万亿亿字节) 增长到 175ZB, 相当于每天产生 491EB(1EB=1.1529e+18 字节)的数据。新一代信息技术的迅速发展与普及、全球数据的“井喷式”生产、数据收集存储和处理成本的大幅下降、机器计算能力的大幅提高,为数据资源化奠定了基础。
全球每年产生数据量及增速图(数据来源:IDC、Seagate、Statista estimates)
数据资产化构建
数据资产化,使具有使用价值的数据成为一种资产, 在市场上进行流通交易,给拥有者或使用者带来经济利益。数据资产化是构建数据要素市场的关键与核心,包括数据权属的确定、数据资产的定价、数据的交易流通。
一般数据平台架构(资料来源:绿湾科技)
数据资本化的四种主要形式
数据证券化,依托数据资产,通过 IPO、并购重组等手段获得融资。 数据质押融资,数据权利人将其合法拥有的数据出质,从银行等金融机构获取资金的一种融资方式。 数据银行,通过吸纳“数据存款”,把分散在个人和集体中的数据资源集中起来,使其易被发现、访问、并具备互操作。 数据信托,第一步,数据出让方将自己所持有的某一个数据资产包即数据资产作为信托财产设立信托;第二步,信托受益权转让,委托方通过信托受益权转让获得现金收入;第三步,受托人继续委托数据服务商对特定数据资产进行运用和增值,产生收益;第四步,向社会投资者进行信托利益分配。
数据需求主体及类型
需求主体 |
数据品种 |
核心数据类型 |
---|---|---|
医药公司、医疗设备公司等 |
医疗数据 |
病历数据、就诊数据、药品流通 |
银行、小贷公司、互联网金融公司 |
金融数据 |
企业数据、个人数据、个体户数量 |
企业数据 |
中小微企业数据、外资企业数据等 | |
能源企业 |
能源数据 |
石油、天然气等所有相关的数据 |
车联网、汽车公司、汽车后市场 |
交通数据 |
停车场数据、车辆位置数据等 |
供应链相关企业 |
商品数据 |
电子标签数据、商品物流数据等 |
金融机构、汽车公司、消费品公司 |
消费数据 |
个人消费数据、个人征信数据等 |
教育类机构 |
教育数据 |
学习轨迹数据、教育消费数据 |
政府相关部门 |
社会数据 |
与社会管理、政府管理有关的数据 |
其他(如科研机构等) |
社交数据 |
与社交相关的所有数据 |
政府数据 |
政府统计数据,政府审批数据等 | |
电商数据 |
商品交易数据、商品流通数据等 |
数据资产化交易
通过搭建基于区块链技术的平台,促进数据的交易流通。量子加密等技术的开发应用,解决数据交易流通中的安全保密问题,确保数据安全;区块链技术在数据交易流通中的应用,确保数据流通可信、透明、可追溯,解决数据交易流通中数据非授权复制和使用等问题,提高企业参与数据交易的积极性。
基于区块链技术的数据交易流通体系(资料来源:中国信息通信研究院)
结语
数据具有类似金融资本和人力资本的双重属性,即数据具有金融资本的增值性、风险性,也有人力资本的异质性。故数据价格是其补偿价值、增值价值、异质性价值、风险溢价的集合。目前的数据要素市场尚处于初期萌芽阶段,为不完全市场状态。未来,随着数据要素市场逐渐成熟, 数据交易体量扩大,需稳步形成科学规范统一的数据定价交易体系。