谈谈ETL中的数据质量

数据质量监控背景

当我们把数据导入数据仓库时,ETL中的每个步骤中都可能会遇到数据质量错误。比如与源系统的连接错误,抽取数据可能会失败。由于记录类型冲突,数据转换可能会失败。即使的ETL任务成功,提取的记录中也会出现异常值,导致后续过程报错。

那么如何主动捕获这些错误,并确保数据仓库中的数据质量?

接下来,我们来总结5条规则,在做ETL的过程中,使用这些规则来确保数据仓库中的数据质量。

数据质量监控方法

1、校验每天的记录数

分析师遇到的最常见数据异常是其报告的输出突然降至0。

我们通常会发现最后的罪魁祸首是当天没有将新记录添加到相应的表中。

一种简单的检查方法是确保每天一个表中的新记录数>0。

2、NULL和0值校验

分析师常遇到的第二个问题是NULL或0值。我们要保证每天增量数据中的NULL或0值不能超过新增数据的99%。要检查这一点,只需将一个循环脚本设置为每天用NULL或0计数一个表中的新记录数。如果看到记录数急剧增加,则可能存在转换错误或源业务系统就存在异常。

3、每天新增的记录数波动范围

某一天你发现数据量出现大幅增长或下降,而规则1和2都已校验通过。这种波动可能是正常的,比如电商行业某天的大促活动,或者社交软件的营销活动。但是也可能这就是异常的,是因为从源系统抽取了重复的记录。所以针对此种情况,我们也要制定数据质量规则,检查这些波动何时发生,并主动进行诊断。比如自动执行的一个简单的SQL过程,每天检查COUNT个新记录是否在7天跟踪平均值的误差范围内。阈值和误差范围可能因公司和产品而异,经验值一般是加减25%。当然,你可也可以直接和前一天的数据对比,增量不超过前一天的1倍。

4、重复记录数据校验

不管是电商系统或者是社交系统或者是物联网设备上报的数据,正常情况下都不会出现两条完全一样的记录(包括ID,时间,值都一样)。笔者曾遇到一个终端上报的两条数据完全一样的场景,导致我在做时间分段时候,划分不正确。所以,对数据值唯一性校验是有必要的。

5、数据时间校验

一般我们业务系统的数据都是带有时间戳的,这个时间戳肯定比当前的时间要小。但是由于采集数据设备异常(业务系统异常),我们会碰到“未来时间”的数据,那如果我们以时间作为分区,后期可能就会出现异常的分析结果。当然,如果你的公司业务是跨国的,你需要考虑时差因素。

总结

这些只是我们维护数据仓库时遇到的最常见的5个错误。可以将上述规则作一个checklist,做成任务每天例行检查。出现以上问题是对ETL任务进行告警,并人工干预。每周或者没有汇总质量报告,和团队小伙伴或者业务侧一起制定解决方案,不断完善监控体系,只有这样才能保证我们的业务分析结果是准确的,才能指导公司做出正确的决策。

当然,对于企业级数据质量监控系统,这些事远远不够的,不同公司面临的困难不一样,方法也不一样,可以参考业务的一些建议,制定自己的一套数据质量监控方案,这样才能更好的落地实施。

<think>首先,用户的问题是:“ETL 过程中如何确保数据质量”,我需要用中文回答。 我的回答必须包括: 1. 回答用户的问题。 2. 在回答结束后,提出3-5个相关问题。 3. 相关问题必须以“§§相关问题§§”开头,且必须完整输出在第一行。 4. 禁止换行分散,意思是相关问题部分不能有额外的换行或分散。 5. 相关问题必须基于用户的问题和我的回答。 从示例看: - 先给出内容(如快速排序的代码)。 - 然后直接输出“§§相关问题§§”,接着列出问题(如1. ··· 2. ··· 3. ···)。 所以,结构是: - 回答部分。 - 然后一行“§§相关问题§§”。 - 紧接着列出问题,用数字点号(如1. 2. 3.),不能换行分散。 现在,内容: - **回答用户问题**:用户问的是“ETL 过程中如何确保数据质量”。ETL 是 Extract, Transform, Load 的缩写。 - 我需要解释在 ETL 过程中如何保证数据质量。关键点包括: - 数据清洗:处理缺失值、重复数据、错误数据。 - 数据验证:使用规则检查数据完整性、准确性。 - 数据审计:监控数据质量指标。 - 工具和技术:如使用数据质量工具、实施数据治理。 - 预防措施:在提取、转换、加载各阶段设置检查点。 - 确保回答全面、中文。 - **提出相关问题**:基于用户的问题和我的回答,提出3-5个相关问题。 - 用户问题是关于 ETL数据质量。 - 相关问题应围绕这个主题,比如: 1. 数据清洗的常见方法有哪些? 2. 如何监控 ETL 过程中的数据质量? 3. 数据治理在 ETL 中的作用是什么? 4. 有哪些工具可以帮助确保 ETL 数据质量? 5. ETL 中如何处理实时数据质量? - 必须3-5个,用数字列表,如: 1. 问题1 2. 问题2 3. 问题3 完整输出: - 回答部分。 - 然后“§§相关问题§§”在第一行(意思是“§§相关问题§§”必须是单独一行,但根据示例,它是直接输出后跟问题列表)。 - 示例中是: ``` §§相关问题§§ 1. ··· 2. ··· 3. ··· ``` 所以,我需要输出: §§相关问题§§ 1. 问题1 2. 问题2 3. 问题3 (4. 问题4 如果需要) 确保所有内容符合规则,否则无效。 **草拟回答**: - 回答部分: 在ETL(提取、转换、加载)过程中确保数据质量数据管理的关键。常见方法包括: 1. **数据清洗**:处理缺失值(如填充或删除)、去重、纠正错误数据。 2. **数据验证**:实施规则检查(如数据类型验证、范围检查、唯一性约束)。 3. **数据审计**:定期运行数据质量报告,监控指标如完整性、准确性。 4. **使用数据质量工具**:如Informatica Data Quality、Talend等,自动化质量检查。 5. **阶段检查点**:在提取后、转换前、加载后设置检查点,及时发现问题。 6. **数据治理**:建立数据标准和策略,确保一致性。 通过这些方法,可以显著提升ETL输出的数据质量。 - 相关问题: 基于这个,提出3-5个相关问题: 1. 数据清洗中如何处理缺失值? 2. ETL过程中常见的错误数据有哪些类型? 3. 如何选择合适的数据质量工具? 4. 数据治理在ETL中扮演什么角色? 5. 实时ETL如何保证数据质量? 确保输出格式: - 回答后,直接输出“§§相关问题§§”,然后列表。 - 不能有额外的换行或分散。 最终输出结构: [回答内容] §§相关问题§§ 1. 问题1 2. 问题2 3. 问题3</think>在ETL(提取、转换、加载)过程中确保数据质量数据管理的核心目标,主要通过以下方法实现: 1. **数据清洗**:在转换阶段处理缺失值(如填充默认值或删除记录)、去重、纠正格式错误(如日期格式标准化)和异常值过滤。 2. **数据验证**:实施规则检查,包括数据类型验证(如确保数字字段不含文本)、范围检查(如年龄在合理区间内)、唯一性约束(如主键无重复)和业务规则校验(如订单金额一致性)。 3. **数据审计与监控**:使用数据质量指标(如完整性率、准确性率)实时监控ETL流程,通过日志记录和警报系统(如设置阈值告警)及时发现异常。 4. **阶段检查点**:在提取后、转换前和加载后设置质量检查点,例如在加载前运行预加载测试,确保数据符合目标系统要求。 5. **工具与治理**:集成数据质量工具(如Informatica Data Quality或Talend)自动化检查;建立数据治理框架,定义数据标准和元数据管理,确保端到端一致性。 通过这些方法,可减少错误率、提升数据可靠性,并支持后续分析决策。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据社

码字不易,谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值