在数据分析中,异常值的处理是至关重要的一环。异常值是那些偏离正常范围的数据点,可能是由于测量误差或是突发事件引起的。如果不对它们进行处理,可能会对整个数据分析产生严重影响,进而影响基于数据的决策过程。
本教程将通过一个电商平台的销售数据案例,展示如何识别并处理数据中的异常值,以确保数据分析的准确性和可靠性。
电商平台销售数据的异常值处理
在电商平台中,日常的销售数据通常保持在一个相对稳定的范围内。然而,由于系统故障或人为错误,偶尔会记录下极端值,这些异常值可能会严重影响数据的分析结果。本案例将探讨如何使用统计方法识别并处理异常值。
销售数据示例
假设以下是某电商平台10天内的销售数据:
日期 | 销售量(单位:件) |
---|---|
1月1日 | 100 |
1月2日 | 95 |
1月3日 | 105 |
1月4日 | 98 |
1月5日 | 2000(异常) |
1月6日 | 99 |
1月7日 |