朴素贝叶斯算法(Naive Bayes Classifier)是一种基于贝叶斯定理的经典机器学习算法,以其简单、易于实现和对小数据集敏感的特点被广泛应用于分类任务中。该算法通过独立假设,将各特征的条件概率独立计算,再结合贝叶斯定理推导出样本属于不同类别的概率,从而实现分类。在此基础上,本文将深入探讨朴素贝叶斯算法的原理,了解其优势和局限性,并在R语言中进行算法实现与优化分析。通过分析常用的数据处理、模型构建及评估方法,我们将探索如何借助R的
e1071
包来高效构建分类模型,并展示朴素贝叶斯算法在实际任务中的应用潜力和改进思路。
一、认识朴素贝叶斯算法
1、朴素贝叶斯算法概述
朴素贝叶斯算法(Naive Bayes Classifier, NBC)是基于贝叶斯定理的一种概率分类算法。该算法假设各特征之间相互独立,并根据条件概率的最大值对未知样本进行分类。
贝叶斯定理
贝叶斯定理描述了一个事件发生的条件概率,其公式如下: