POJ 1252

两次完全背包

求买【1,100】价值的东西平均需要和最多需要硬币数目,可以通过加法和减法获得一个价值

Euro Efficiency
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 4116 Accepted: 1757

Description

On January 1st 2002, The Netherlands, and several other European countries abandoned their national currency in favour of the Euro. This changed the ease of paying, and not just internationally.
A student buying a 68 guilder book before January 1st could pay for the book with one 50 guilder banknote and two 10 guilder banknotes, receiving two guilders in change. In short:50+10+10-1-1=68. Other ways of paying were: 50+25-5-1-1, or 100-25-5-1-1.Either way, there are always 5 units (banknotes or coins) involved in the payment process, and it
could not be done with less than 5 units.
Buying a 68 Euro book is easier these days: 50+20-2 = 68, so only 3 units are involved.This is no coincidence; in many other cases paying with euros is more efficient than paying with guilders. On average the Euro is more efficient. This has nothing to do, of course, with the value of the Euro, but with the units chosen. The units for guilders used to be: 1, 2.5, 5, 10, 25, 50,whereas the units for the Euro are: 1, 2, 5, 10, 20, 50.
For this problem we restrict ourselves to amounts up to 100 cents. The Euro has coins with values 1, 2, 5, 10, 20, 50 eurocents. In paying an arbitrary amount in the range [1, 100] eurocents, on average 2.96 coins are involved, either as payment or as change. The Euro series is not optimal in this sense. With coins 1, 24, 34, 39, 46, 50 an amount of 68 cents can be paid using two coins.The average number of coins involved in paying an amount in the range [1, 100] is 2.52.
Calculations with the latter series are more complex, however. That is, mental calculations.These calculations could easily be programmed in any mobile phone, which nearly everybody carries around nowadays. Preparing for the future, a committee of the European Central Bank is studying the efficiency of series of coins, to find the most efficient series for amounts up to 100 eurocents. They need your help.
Write a program that, given a series of coins, calculates the average and maximum number of coins needed to pay any amount up to and including 100 cents. You may assume that both parties involved have sufficient numbers of any coin at their disposal.

Input

The first line of the input contains the number of test cases. Each test case is described by 6 different positive integers on a single line: the values of the coins, in ascending order. The first number is always 1. The last number is less than 100.

Output

For each test case the output is a single line containing first the average and then the maximum number of coins involved in paying an amount in the range [1, 100]. These values are separated by a space. As in the example, the average should always contain two digits behind the decimal point. The maximum is always an integer.

Sample Input

3
1 2 5 10 20 50
1 24 34 39 46 50
1 2 3 7 19 72

Sample Output

2.96 5
2.52 3
2.80 4
#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
const int INF = 1e8+666;
int a[10];
int dp[10000];
int main(){
	int T;
	cin>>T;
	while(T--){
		for(int i=1;i<=6;i++){
			scanf("%d",&a[i]);
		}
		dp[0] = 0;
		for(int i=1;i<=3000;i++){
			dp[i] = INF;
		}
		for(int i=1;i<=6;i++){
			for(int j=a[i];j<=3000;j++){
				dp[j] = min(dp[j],dp[j-a[i]]+1);
			}
		}
		for(int i=1;i<=6;i++){
			for(int j=3000;j>=1;j--){
				dp[j] = min(dp[j],dp[j+a[i]]+1);
			}
		}
		int maxn = 0;
		int ans = 0;
		double ave = 0;
		for(int i = 1;i<=100;i++){
			ans += dp[i];
			maxn = max(maxn,dp[i]);
		}
		ave = (double)ans/100;
		printf("%.2f %d\n",ave,maxn);     //G++用.2f  c++ 用.2lf

	}
	return 0;
}

深搜
#include <iostream>
#include <stdio.h>
using namespace std;
const int INF = 1e8+666;
int a[10];
int dp[10000];
void dfs(int x,int step){
	if(step>30 || x>3000){
		return ;
	}
	for(int i=1;i<=6;i++){
		if(step+1 < dp[x+a[i]]){
			dp[x+a[i]] = step+1;
			dfs(x+a[i],step+1);
		}
		if(x >= a[i]){
			if(step+1 < dp[x-a[i]]){
				dp[x-a[i]] = step+1;
				dfs(x-a[i],step+1);
			}
		}
	}
}
int main(){

	int T;
	cin>>T;
	while(T--){
		for(int i=1;i<=6;i++){
			scanf("%d",&a[i]);
		}
		for(int i=1;i<=3000;i++)
			dp[i] = INF;
		dp[0] = 0;
		dfs(0,0);
	
		int maxn = 0,sum = 0;
		for(int i=0;i<=100;i++){
			sum += dp[i];
			maxn = max(maxn,dp[i]);
		}
		
		printf("%.2f %d\n",(double)sum/100,maxn);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值