玲珑#19 A 数论打表 B RMQ+二分

本文提供了两道ACM编程竞赛题目的解决方案。第一题通过简单的条件判断实现数值运算;第二题利用RMQ区间最值查询算法解决复杂的数据结构与算法问题。文章详细展示了代码实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A: http://www.ifrog.cc/acm/problem/1145


#include <bits/stdc++.h>
using namespace std;
int main(){
	int n;
	while(~scanf("%d",&n)){
		int m = n;
		int num;
		if( m >=1 && m<=10 ){
			num = 0;
		}else if(m <= 99)  num = 1;
		else if(m <= 998)  num = 2;
		else if(m <= 9997) num = 3;
		else if(m <= 99996) num = 4;
		else if(m <= 999995) num = 5;
		else if(m <= 9999994) num = 6;
		else if(m <= 99999993) num = 7;
		else if(m <= 999999992) num = 8;
		else if(m <= 9999999991) num = 9;
		cout<<n+num<<endl;
	}
	return 0;
}


B:http://www.ifrog.cc/acm/problem/1149

#include <iostream>
#include <cstdio>
#include <string.h>
#include <cmath>
#define LL long long
using namespace std;
const int AX = 2e5+666;
int dp1[AX][20];
int dp2[AX][20];
int n,k;
int mm[AX];
int a[AX];
void rmq(){
	for( int j = 1 ; (1 << j) <= n ; j++ ){
		for( int i = 1 ; i + ( 1 << j ) -1 <= n ; i++ ){
			dp1[i][j] = min(dp1[i][j-1],dp1[i+(1<<(j-1))][j-1]);
			dp2[i][j] = max(dp2[i][j-1],dp2[i+(1<<(j-1))][j-1]);
		}
	}
}
int query(int l, int r){
	int k = mm[r - l + 1];
	//int  k = (int)log( r - l + 1) / log(2);
	return max(dp2[l][k] , dp2[r- ( 1 << k ) + 1 ][k]) - min(dp1[l][k] , dp1[r- ( 1 << k ) + 1 ][k]);
}

int main(){
	
	mm[0] = -1;
	for(int i=1; i<AX; ++i) mm[i]=(i&(i-1))?mm[i-1]:mm[i-1]+1; //预处理存储K的值
	scanf("%d%d",&n,&k);
	for(int i = 1 ; i <= n; i++){
		scanf("%d",&a[i]);
		dp1[i][0] = a[i];
		dp2[i][0] = a[i];
	}
	rmq();
	LL ans = 0;
	int l,r,res;
	for( int i = 1 ; i <= n ; i++ ){
		l = 1, r = i ,res = i;
		while( l <= r ){
			int mid = (l + r) >> 1;
			int mn = query( mid , i ) ;
			if( mn > k )  l = mid + 1;
			else r = mid - 1 , res = mid ;
		}
		ans += ( i - res + 1 );
	}
	printf("%lld\n",ans);
	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值