X轴上有N条线段,每条线段包括1个起点和终点。线段的重叠是这样来算的,[10 20]和[12 25]的重叠部分为[12 20]。
给出N条线段的起点和终点,从中选出2条线段,这两条线段的重叠部分是最长的。输出这个最长的距离。如果没有重叠,输出0。
Input
第1行:线段的数量N(2 <= N <= 50000)。 第2 - N + 1行:每行2个数,线段的起点和终点。(0 <= s , e <= 10^9)
Output
输出最长重复区间的长度。
Input示例
5 1 5 2 4 2 8 3 7 7 9
Output示例
4
思路: 对左端点升序排序,右端点降序排序,每次更新右边的最远距离,并拿最远距离和当前最右比较,两者中最小的减去当前左端点的距离与maxn比较,更新最远距离和maxn即可
Code:
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int AX = 5e4+666;
struct Node
{
int l , r;
}e[AX];
bool cmp( const Node &a , const Node &b){
if( a.l == b.l ) return a.r > b.r;
else return a.l < b.l;
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(0);
int n;
cin>>n;
for( int i = 0 ; i < n ; i++ ){
cin >> e[i].l >> e[i].r;
}
sort( e, e + n, cmp );
int far_r = e[0].r;
int maxn = 0;
for( int i = 1 ; i < n ; i++ ){
maxn = max( maxn , min(e[i].r , far_r) - e[i].l );
if( e[i].r > far_r ){
far_r = e[i].r;
}
}
cout<<maxn<<endl;
return 0;
}
1133 不重叠的线段

基准时间限制:1 秒 空间限制:131072 KB 分值: 10
难度:2级算法题


X轴上有N条线段,每条线段有1个起点S和终点E。最多能够选出多少条互不重叠的线段。(注:起点或终点重叠,不算重叠)。
例如:[1 5][2 3][3 6],可以选[2 3][3 6],这2条线段互不重叠。
Input
第1行:1个数N,线段的数量(2 <= N <= 10000) 第2 - N + 1行:每行2个数,线段的起点和终点(-10^9 <= S,E <= 10^9)
Output
输出最多可以选择的线段数量。
Input示例
3 1 5 2 3 3 6
Output示例
2
这个和上面的是一种类型,上边求重叠长度,这个求不重叠数量,相对难一点点。 不过差不多。
思路:还是对左右排序,这次是对右端点升序排序,左端点降序,每次更新右端点。因为是要求不重叠,肯定要覆盖范围小才好。
#include <iostream>
#include <algorithm>
using namespace std;
const int AX = 1e4+666;
struct Node
{
int l , r ;
}e[AX];
bool cmp( const Node &a , const Node &b ){
if( a.r == b.r ) return a.l > b.l;
else return a.r < b.r;
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(0);
int n;
cin>>n;
for( int i = 0 ; i < n ; i++ ) {
cin >> e[i].l >> e[i].r;
}
sort( e , e + n ,cmp );
int far_r = e[0].r;
int res = 1;
for( int i = 1 ; i < n ; i++ ){
if( e[i].l >= far_r ) {
res++;
far_r = e[i].r;
}
}
cout<<res<<endl;
return 0;
}