1278 相离的圆

基准时间限制:1 秒 空间限制:131072 KB 分值: 10
难度:2级算法题
平面上有N个圆,他们的圆心都在X轴上,给出所有圆的圆心和半径,求有多少对圆是相离的。
例如:4个圆分别位于1, 2, 3, 4的位置,半径分别为1, 1, 2, 1,那么{1, 2}, {1, 3} {2, 3} {2, 4} {3, 4}这5对都有交点,只有{1, 4}是相离的。
Input
第1行:一个数N,表示圆的数量(1 <= N <= 50000) 第2 - N + 1行:每行2个数P, R中间用空格分隔,P表示圆心的位置,R表示圆的半径(1 <= P, R <= 10^9)
Output
输出共有多少对相离的圆。
Input示例
4 1 1 2 1 3 2 4 1
Output示例
1
思路:把圆看作是线段相交,按照终点升序排序,然后二分查找第一个不小于左坐标的索引,累加这个索引即可
Code:
#include <iostream>
#include <algorithm>
using namespace std;
const int AX = 1e5+666;
struct Node
{
int l , r ;
}e[AX];
bool cmp( const Node &a , const Node &b ){
if( a.r == b.r ) return a.l > b.l;
else return a.r < b.r;
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(0);
int n;
cin>>n;
int o , r ;
for( int i = 0 ; i < n ; i++ ) {
cin >> o >> r;
e[i].l = o - r ;
e[i].r = o + r ;
}
sort( e , e + n ,cmp );
int res = 0;
for( int i = 0 ; i < n ; i++ ){
int l = 0 , r = n - 1 ;
int mid;
while( l <= r ){
mid = ( l + r ) >> 1;
if( e[mid].r >= e[i].l ) r = mid - 1 ;
else l = mid + 1;
}
res += l;
}
cout<< res <<endl;
return 0;
}