51nod 1278 相离的圆

本文介绍了一种算法,用于解决平面上多个圆心位于X轴上的圆中相离圆对的数量计算问题。通过将圆转化为线段并利用二分查找优化计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1278 相离的圆
基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题
收藏
关注
平面上有N个圆,他们的圆心都在X轴上,给出所有圆的圆心和半径,求有多少对圆是相离的。
例如:4个圆分别位于1, 2, 3, 4的位置,半径分别为1, 1, 2, 1,那么{1, 2}, {1, 3} {2, 3} {2, 4} {3, 4}这5对都有交点,只有{1, 4}是相离的。
Input
第1行:一个数N,表示圆的数量(1 <= N <= 50000)
第2 - N + 1行:每行2个数P, R中间用空格分隔,P表示圆心的位置,R表示圆的半径(1 <= P, R <= 10^9)
Output
输出共有多少对相离的圆。
Input示例
4
1 1
2 1
3 2
4 1
Output示例
1

思路:把圆看作是线段相交,按照终点升序排序,然后二分查找第一个不小于左坐标的索引,累加这个索引即可

Code:

#include <iostream>
#include <algorithm>
using namespace std;
const int AX = 1e5+666;

struct  Node
{
	int l , r ;
}e[AX];

bool cmp( const Node &a , const Node &b ){
	if( a.r == b.r ) return a.l > b.l;
	else return a.r < b.r;
}

int main(){

	ios_base::sync_with_stdio(false);
	cin.tie(0);
	int n;
	cin>>n;
	int o , r ;
	for( int i = 0 ; i < n ; i++ ) {
		cin >> o >> r;
		e[i].l = o - r ; 
		e[i].r = o + r ;
	}
	sort( e , e + n ,cmp );
	int res = 0;
	for( int i = 0 ; i < n ; i++ ){
		int l = 0 , r = n - 1 ; 
		int mid;
		while( l <= r ){
			mid = ( l + r ) >> 1;
			if( e[mid].r >= e[i].l ) r = mid - 1 ;
			else l = mid + 1;
		}
		res += l;
	}
	cout<< res <<endl;
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值