51nod 1043 幸运号码

本文介绍了一个有趣的问题:如何计算特定长度的幸运号码的数量,并提供了一种使用数位DP的方法来解决这个问题。通过给出的示例代码,展示了如何计算长度为2N的幸运号码的数量,并考虑了大数情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1043 幸运号码
基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题
收藏
关注
1个长度为2N的数,如果左边N个数的和 = 右边N个数的和,那么就是一个幸运号码。
例如:99、1230、123312是幸运号码。
给出一个N,求长度为2N的幸运号码的数量。由于数量很大,输出数量 Mod 10^9 + 7的结果即可。
Input
输入N(1<= N <= 1000)
Output
输出幸运号码的数量 Mod 10^9 + 7
Input示例
1
Output示例
9
数位dp。下面是看别人的代码A的,我怕是与dp无缘了/(ㄒoㄒ)/。。。
Code:
#include <bits/stdc++.h>
#define LL long long
using namespace std;
const int AX = 1e3+6;
const int MOD = 1e9+7;
LL n , dp[9005] , ans , f[9005];  //dp[i][j],表示第i位数总和为j的号码的个数,每个dp[i][j]都是dp[i-1][j-v](0<=v<=9) 的总和,所以拆成一维的两个,左边n,
//右边也是n

int main(){
	cin >> n;
	f[0] =1 ;  //左边一半的第一位不能为0
	for( int i =1 ; i <= 9 ; i++ ){
		dp[i] = 1; f[i] = 1;
	}
	for( int i = 2 ; i <= n ;i ++){
		for( int j = 9*n ; j >= 1 ;j --){
			LL dpos = 0 , fpos = 0;
			for( int k = 0 ; k <= 9 ; k++ ){
				if( j - k >= 0 ){
					fpos = (fpos+f[j-k]) % MOD;
					dpos = (dp[j-k]+dpos) % MOD;
				}else break;
			}
			f[j] = fpos; dp[j] =dpos;
		}
	}
	for( int i = 1 ; i <= 9*n ; i++ ){
		ans = (ans+(dp[i]*f[i])%MOD)%MOD;   //左右和相等的排列组合总的数量
	}
	cout << ans << endl;
	return 0;
}


题目 51nod 3478 涉及一个矩阵问题,要求通过最少的操作次数,使得矩阵中至少有 `RowCount` 行和 `ColumnCount` 列是回文的。解决这个问题的关键在于如何高效地枚举所有可能的行和列组合,并计算每种组合所需的操作次数。 ### 解法思路 1. **预处理每一行和每一列变为回文所需的最少操作次数**: - 对于每一行,计算将其变为回文所需的最少操作次数。这可以通过比较每对对称位置的值是否相同来完成。 - 对于每一列,计算将其变为回文所需的最少操作次数,方法同上。 2. **枚举所有可能的行和列组合**: - 由于 `N` 和 `M` 的最大值为 8,因此可以枚举所有可能的行组合和列组合。 - 对于每一种组合,计算其所需的最少操作次数,并取最小值。 3. **计算操作次数**: - 对于每一种组合,需要计算哪些行和列需要修改,并且注意行和列的交叉点可能会重复计算,因此需要去重。 ### 代码实现 以下是一个可能的实现方式,使用了枚举和位运算来处理组合问题: ```python def min_operations_to_palindrome(matrix, row_count, col_count): import itertools N = len(matrix) M = len(matrix[0]) # Precompute the cost to make each row a palindrome row_cost = [] for i in range(N): cost = 0 for j in range(M // 2): if matrix[i][j] != matrix[i][M - 1 - j]: cost += 1 row_cost.append(cost) # Precompute the cost to make each column a palindrome col_cost = [] for j in range(M): cost = 0 for i in range(N // 2): if matrix[i][j] != matrix[N - 1 - i][j]: cost += 1 col_cost.append(cost) min_total_cost = float(&#39;inf&#39;) # Enumerate all combinations of rows and columns rows = list(range(N)) cols = list(range(M)) from itertools import combinations for row_comb in combinations(rows, row_count): for col_comb in combinations(cols, col_count): # Calculate the cost for this combination cost = 0 # Add row costs for r in row_comb: cost += row_cost[r] # Add column costs for c in col_comb: cost += col_cost[c] # Subtract the overlapping cells for r in row_comb: for c in col_comb: # Check if this cell is part of the palindrome calculation if r < N // 2 and c < M // 2: if matrix[r][c] != matrix[r][M - 1 - c] and matrix[N - 1 - r][c] != matrix[N - 1 - r][M - 1 - c]: cost -= 1 min_total_cost = min(min_total_cost, cost) return min_total_cost # Example usage matrix = [ [0, 1, 0], [1, 0, 1], [0, 1, 0] ] row_count = 2 col_count = 2 result = min_operations_to_palindrome(matrix, row_count, col_count) print(result) ``` ### 代码说明 - **预处理成本**:首先计算每一行和每一列变为回文所需的最少操作次数。 - **枚举组合**:使用 `itertools.combinations` 枚举所有可能的行和列组合。 - **计算成本**:对于每一种组合,计算其成本,并考虑行和列交叉点的重复计算问题。 ### 复杂度分析 - **时间复杂度**:由于 `N` 和 `M` 的最大值为 8,因此枚举所有组合的时间复杂度为 $ O(N^{RowCount} \times M^{ColCount}) $,这在实际中是可接受的。 - **空间复杂度**:主要是存储预处理的成本,空间复杂度为 $ O(N + M) $。 ### 相关问题 1. 如何优化矩阵中行和列的枚举组合以减少计算时间? 2. 在计算行和列的交叉点时,如何更高效地处理重复计算的问题? 3. 如果矩阵的大小增加到更大的范围,如何调整算法以保持效率? 4. 如何处理矩阵中行和列的回文条件不同时的情况? 5. 如何扩展算法以支持更多的操作类型,例如翻转某个区域的值?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值