Ivan is playing a strange game.
He has a matrix a with n rows and m columns. Each element of the matrix is equal to either 0 or 1. Rows and columns are 1-indexed. Ivan can replace any number of ones in this matrix with zeroes. After that, his score in the game will be calculated as follows:
- Initially Ivan's score is 0;
- In each column, Ivan will find the topmost 1 (that is, if the current column is j, then he will find minimum i such that ai, j = 1). If there are no 1's in the column, this column is skipped;
- Ivan will look at the next min(k, n - i + 1) elements in this column (starting from the element he found) and count the number of 1's among these elements. This number will be added to his score.
Of course, Ivan wants to maximize his score in this strange game. Also he doesn't want to change many elements, so he will replace the minimum possible number of ones with zeroes. Help him to determine the maximum possible score he can get and the minimum possible number of replacements required to achieve that score.
The first line contains three integer numbers n, m and k (1 ≤ k ≤ n ≤ 100, 1 ≤ m ≤ 100).
Then n lines follow, i-th of them contains m integer numbers — the elements of i-th row of matrix a. Each number is either 0 or 1.
Print two numbers: the maximum possible score Ivan can get and the minimum number of replacements required to get this score.
4 3 2 0 1 0 1 0 1 0 1 0 1 1 1
4 1
3 2 1 1 0 0 1 0 0
2 0
In the first example Ivan will replace the element a1, 2.
思路:查找每列一最集中的地方(当然要满足min(k,n-i+1)),然后记录开始的地方,最后把每列记录的地方上面的1换成0.
Code:
#include <bits/stdc++.h>
using namespace std;
const int AX = 1e2+6;
int a[AX][AX];
int main(){
ios_base::sync_with_stdio(false); cin.tie(0);
int n , m ,k ;
cin >> n >> m >> k;
for( int i = 0 ; i < n ; i++ ){
for( int j = 0 ; j < m ; j++ ){
cin >> a[i][j];
}
}
int id[AX];
int ans[AX];
memset(ans,0,sizeof(ans));
for( int j = 0 ; j < m ; j ++ ){
for( int i = 0 ; i < n ; i ++ ){
int sum = 0;
if( a[i][j] == 1 ){
int tmp = min(k,n-i+1);
for( int kk = i ; kk < i + tmp ; kk++ ){
if( kk >= n ) break;
sum += a[kk][j];
}
if( ans[j] < sum ){
ans[j] = sum;
id[j] = i;
}
}
}
}
int scr = 0 , op = 0;
for( int i = 0 ; i < m; i++ ){
scr += ans[i];
for( int j = 0 ; j < id[i] ; j++ ){
if( j >= n ) break;
if( a[j][i] ) op ++;
}
}
cout << scr << ' ' << op << endl;
return 0;
}
本文介绍了一个基于矩阵的游戏,玩家需最大化分数并最小化替换操作。通过分析矩阵中的1分布,找到最优解策略。
1189

被折叠的 条评论
为什么被折叠?



