51nod1098 最小方差 公式暴力

本文介绍了一种寻找给定数值集合中使得方差最小的子集的方法。通过使用前缀和与排序技巧,实现了对任意指定大小子集的方差的有效计算。此问题属于算法竞赛中的经典题目。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题
收藏
关注
若x1,x2,x3......xn的平均数为k。
则方差s^2 = 1/n * [(x1-k)^2+(x2-k)^2+.......+(xn-k)^2] 。
方差即偏离平方的均值,称为标准差或均方差,方差描述波动程度。
给出M个数,从中找出N个数,使这N个数方差最小。



Input


第1行:2个数M,N,(M > N, M <= 10000)第2 - M + 1行:M个数的具体值(0 <= Xi <= 10000)


Output


输出最小方差 * N的整数部分。


Input示例


5 312345


Output示例


2




思路:暴力n个数的所有方差,为了精确度将公式化简一下: 方差 * n 公式就成了 x1^2 + x2 ^ 2 +...+ xn^2 - ( x1 + x2 + ...+ xn )^2 / n .用前缀数组开LL即可
Code:
#include <bits/stdc++.h>
#define LL long long
using namespace std;
const int AX = 1e4+666;
int a[AX];
LL sum[AX];
LL s[AX];
int main(){
	int m , n ;
	cin >> m >> n ;
	for( int i = 1 ; i <= m; i++ ){
		cin >> a[i];
	}
	sort( a + 1 , a + m + 1 );
	s[0] = sum[0] = 0 ;
	for( int i = 1 ; i <= m ; i++ ){
		sum[i] = sum[i-1] + a[i];
		s[i] = s[i-1] + a[i] * a[i];
	}
	double minus = (double)1e16;
	for( int i = n; i <= m; i ++ ){
		double tmp = ( s[i] - s[i-n] ) - 1.0 * ( sum[i] - sum[i-n] ) * ( sum[i] - sum[i-n] ) / n ;
		if( tmp < minus )
			minus = tmp;
	}
	printf( "%lld\n" , (LL)minus );
	return 0 ;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值