若x1,x2,x3......xn的平均数为k。
则方差s^2 = 1/n * [(x1-k)^2+(x2-k)^2+.......+(xn-k)^2] 。
方差即偏离平方的均值,称为标准差或均方差,方差描述波动程度。
Input
第1行:2个数M,N,(M > N, M <= 10000)第2 - M + 1行:M个数的具体值(0 <= Xi <= 10000)
Output
输出最小方差 * N的整数部分。
Input示例
5 312345
Output示例
2
思路:暴力n个数的所有方差,为了精确度将公式化简一下: 方差 * n 公式就成了 x1^2 + x2 ^ 2 +...+ xn^2 - ( x1 + x2 + ...+ xn )^2 / n .用前缀数组开LL即可
Code:
#include <bits/stdc++.h>
#define LL long long
using namespace std;
const int AX = 1e4+666;
int a[AX];
LL sum[AX];
LL s[AX];
int main(){
int m , n ;
cin >> m >> n ;
for( int i = 1 ; i <= m; i++ ){
cin >> a[i];
}
sort( a + 1 , a + m + 1 );
s[0] = sum[0] = 0 ;
for( int i = 1 ; i <= m ; i++ ){
sum[i] = sum[i-1] + a[i];
s[i] = s[i-1] + a[i] * a[i];
}
double minus = (double)1e16;
for( int i = n; i <= m; i ++ ){
double tmp = ( s[i] - s[i-n] ) - 1.0 * ( sum[i] - sum[i-n] ) * ( sum[i] - sum[i-n] ) / n ;
if( tmp < minus )
minus = tmp;
}
printf( "%lld\n" , (LL)minus );
return 0 ;
}