N堆石子摆成一条线。现要将石子有次序地合并成一堆。规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价。计算将N堆石子合并成一堆的最小代价。
例如: 1 2 3 4,有不少合并方法
1 2 3 4 => 3 3 4(3) => 6 4(9) => 10(19)
1 2 3 4 => 1 5 4(5) => 1 9(14) => 10(24)
1 2 3 4 => 1 2 7(7) => 3 7(10) => 10(20)
括号里面为总代价可以看出,第一种方法的代价最低,现在给出n堆石子的数量,计算最小合并代价。
Input
第1行:N(2 <= N <= 100) 第2 - N + 1:N堆石子的数量(1 <= A[i] <= 10000)
Output
输出最小合并代价
Input示例
4 1 2 3 4
Output示例
19
思路: 矩阵连乘是相邻矩阵才能相乘,石子归并类似。
递推公式:dp[i][j] = min( dp[i][k] + dp[k+1][j] ) + sum[i][j] ( sum[i][j] 为i到j的石子数量,dp[i][j] 为i到j合并的代价)。
Code:
#include <bits/stdc++.h>
#define INF 0x3f3f3f
using namespace std;
const int AX = 1e2+6;
int m[AX][AX];
int sum[AX];
int main(){
int n;
cin >> n ;
int x;
cin >> x;
sum[0] = x;
for( int i = 1 ; i < n ; i++ ){
cin >> x;
sum[i] = sum[i-1] + x;
}
for( int i = 0 ; i < n ; i++ ){
m[i][i] = 0;
}
for( int r = 2 ; r <= n ;r ++ ){
for( int i = 0 ; i <= n - r; i++ ){
int j = i + r - 1;
m[i][j] = INF;
int tmp = sum[j] - ( i > 0 ? sum[i-1] : 0 );
for( int k = i ; k < j ; k++ ){
m[i][j] = min( m[i][j] , m[i][k] + m[k+1][j] + tmp );
}
}
}
cout << m[0][n-1] << endl;
return 0;
}