51nod1021 石子归并 (dp 类似矩阵连乘)

本文探讨了石子归并问题,这是一种典型的动态规划题目。文章详细解释了问题背景及求解过程,给出了具体的递推公式和实现代码,旨在帮助读者理解如何通过动态规划解决此类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题
收藏
关注
N堆石子摆成一条线。现要将石子有次序地合并成一堆。规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价。计算将N堆石子合并成一堆的最小代价。

例如: 1 2 3 4,有不少合并方法
1 2 3 4 => 3 3 4(3) => 6 4(9) => 10(19)
1 2 3 4 => 1 5 4(5) => 1 9(14) => 10(24)
1 2 3 4 => 1 2 7(7) => 3 7(10) => 10(20)

括号里面为总代价可以看出,第一种方法的代价最低,现在给出n堆石子的数量,计算最小合并代价。
Input
第1行:N(2 <= N <= 100)
第2 - N + 1:N堆石子的数量(1 <= A[i] <= 10000)
Output
输出最小合并代价
Input示例
4
1
2
3
4
Output示例
19
 
 

思路: 矩阵连乘是相邻矩阵才能相乘,石子归并类似。

递推公式:dp[i][j] = min( dp[i][k] + dp[k+1][j] ) + sum[i][j] ( sum[i][j] 为i到j的石子数量,dp[i][j] 为i到j合并的代价)。

Code:

#include <bits/stdc++.h>
#define INF 0x3f3f3f
using namespace std;
const int AX = 1e2+6;
int m[AX][AX];
int sum[AX];
int main(){
	int n;
	cin >> n ;
	int x;
	cin >> x;
	sum[0] = x;
	for( int i = 1 ; i < n ; i++ ){
		cin >> x;
		sum[i] = sum[i-1] + x;
	}	
	for( int i = 0 ; i < n ; i++ ){
		m[i][i] = 0;
	}
	for( int r = 2 ; r <= n ;r ++ ){
		for( int i = 0 ; i <= n - r; i++ ){
			int j = i + r - 1;
			m[i][j] = INF;
			int tmp = sum[j] - ( i > 0 ? sum[i-1] : 0 );
			for( int k = i ; k < j ; k++ ){
				m[i][j] = min( m[i][j] , m[i][k] + m[k+1][j] + tmp );
			}
		}
	}
	cout << m[0][n-1] << endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值