基准时间限制:1 秒 空间限制:131072 KB 分值: 20
难度:3级算法题
B国拥有n个城市,其交通系统呈树状结构,即任意两个城市存在且仅存在一条交通线将其连接。A国是B国的敌国企图秘密发射导弹打击B国的交通线,现假设每条交通线都有50%的概率被炸毁,B国希望知道在被炸毁之后,剩下联通块的个数的期望是多少?
Input
一个数n(2<=n<=100000) 接下来n-1行,每行两个数x,y表示一条交通线。(1<=x,y<=n) 数据保证其交通系统构成一棵树。
Output
一行一个数,表示答案乘2^(n-1)后对1,000,000,007取模后的值。
Input示例
3 1 2 1 3
Output示例
8
思路:每条线期望都是50%,那么就是一半的交通线((n-1)/2)被炸毁,联通块个数为(n+1)/2。
Code:
#include <bits/stdc++.h> #define LL long long using namespace std; const LL MOD = 1e9+7; LL quick( LL a , LL b , LL c ){ LL ans = 1; while( b ){ if( b & 1 ){ ans = ( ans * a ) % c; } b >>= 1; a = ( a * a ) % c; } return ans % c ; } int main(){ LL n; cin >> n; LL x ,y ; cout << ((n + 1) * quick( 2 , n - 2 , MOD )) % MOD; return 0; }