51nod1632 B君的连通

探讨了在B国的树状交通系统中,每条边有50%概率被摧毁的情况下,剩余联通块数量的期望值计算方法。通过数学分析与C++实现,给出了具体的算法与代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题
收藏
关注

B国拥有n个城市,其交通系统呈树状结构,即任意两个城市存在且仅存在一条交通线将其连接。A国是B国的敌国企图秘密发射导弹打击B国的交通线,现假设每条交通线都有50%的概率被炸毁,B国希望知道在被炸毁之后,剩下联通块的个数的期望是多少?


Input
一个数n(2<=n<=100000)
接下来n-1行,每行两个数x,y表示一条交通线。(1<=x,y<=n)
数据保证其交通系统构成一棵树。
Output
一行一个数,表示答案乘2^(n-1)后对1,000,000,007取模后的值。
Input示例
3
1 2
1 3
Output示例
8
思路:每条线期望都是50%,那么就是一半的交通线((n-1)/2)被炸毁,联通块个数为(n+1)/2。
Code:
#include <bits/stdc++.h>
#define LL long long
using namespace std;
const LL MOD = 1e9+7;
LL quick( LL a , LL b , LL c ){
	LL ans = 1;
	while( b ){
		if( b & 1 ){
			ans = ( ans * a ) % c;
		}
		b >>= 1;
		a = ( a * a ) % c;
	}
	return ans % c ;
}
int main(){
	LL n;
	cin >> n;
	LL x ,y ;
	cout << ((n + 1) * quick( 2 , n - 2 , MOD )) % MOD;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值