51nod1051 最大子矩阵和

本文探讨了一个经典的算法问题——寻找一个M*N矩阵中具有最大元素和的子矩阵。通过枚举左右边界的方法将问题转化为最大子段和问题,并提供了一段C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基准时间限制:2 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
收藏
关注
一个M*N的矩阵,找到此矩阵的一个子矩阵,并且这个子矩阵的元素的和是最大的,输出这个最大的值。
例如:3*3的矩阵:

-1 3 -1
2 -1 3
-3 1 2

和最大的子矩阵是:

3 -1
-1 3
1 2



Input


第1行:M和N,中间用空格隔开(2 <= M,N <= 500)。第2 - N + 1行:矩阵中的元素,每行M个数,中间用空格隔开。(-10^9 <= M[i] <= 10^9)


Output


输出和的最大值。如果所有数都是负数,就输出0。


Input示例


3 3-1 3 -12 -1 3-3 1 2


Output示例


7


思路:枚举左右边界,然后就转化成了最大子段和,每一行相当于一个数,用数组记录前缀和。
Code:
#include <bits/stdc++.h>
#define LL long long 
using namespace std;
const int AX = 5e2+66;
LL a[AX][AX];
LL sum[AX][AX];
LL b[AX][AX];
LL res ;

int main(){
	int n , m ;
	scanf("%d%d",&m,&n);
	int ok = 0 ;
	memset(sum,0,sizeof(sum));
	for( int i = 1 ; i <= n; i ++ ){
		for( int j = 1 ; j <= m ; j++ ){
			scanf("%lld",&a[i][j]);
			if( a[i][j] ) ok = 1;
		}
	}
	for( int i = 1 ; i <= n ; i ++ ){
		for( int j = 1 ; j <= m ; j ++ ){
			sum[j][i] = sum[j-1][i] + a[i][j];
		}
	}

	if( !ok ){
		printf("0\n");
		return 0;
	}
	res = 0;
	for( int i = 1 ; i <= m ; i ++ ){
		for(int j = i ; j <= m ; j++ ){
			LL temp = sum[j][1] - sum[i-1][1];
			res = max(res,temp);
			for( int k = 2 ; k <= n ; k++ ){
				temp = max(temp , 0LL) + (sum[j][k] - sum[i-1][k]) ;
				res = max(res,temp);
			}
		}
	}
	printf("%lld\n",res);
	return 0 ;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值