基准时间限制:2 秒 空间限制:131072 KB 分值: 40
难度:4级算法题
一个M*N的矩阵,找到此矩阵的一个子矩阵,并且这个子矩阵的元素的和是最大的,输出这个最大的值。
例如:3*3的矩阵:
-1 3 -1
2 -1 3
-3 1 2
和最大的子矩阵是:
3 -1
-1 3
1 2
Input
第1行:M和N,中间用空格隔开(2 <= M,N <= 500)。第2 - N + 1行:矩阵中的元素,每行M个数,中间用空格隔开。(-10^9 <= M[i] <= 10^9)
Output
输出和的最大值。如果所有数都是负数,就输出0。
Input示例
3 3-1 3 -12 -1 3-3 1 2
Output示例
7
思路:枚举左右边界,然后就转化成了最大子段和,每一行相当于一个数,用数组记录前缀和。
Code:
#include <bits/stdc++.h>
#define LL long long
using namespace std;
const int AX = 5e2+66;
LL a[AX][AX];
LL sum[AX][AX];
LL b[AX][AX];
LL res ;
int main(){
int n , m ;
scanf("%d%d",&m,&n);
int ok = 0 ;
memset(sum,0,sizeof(sum));
for( int i = 1 ; i <= n; i ++ ){
for( int j = 1 ; j <= m ; j++ ){
scanf("%lld",&a[i][j]);
if( a[i][j] ) ok = 1;
}
}
for( int i = 1 ; i <= n ; i ++ ){
for( int j = 1 ; j <= m ; j ++ ){
sum[j][i] = sum[j-1][i] + a[i][j];
}
}
if( !ok ){
printf("0\n");
return 0;
}
res = 0;
for( int i = 1 ; i <= m ; i ++ ){
for(int j = i ; j <= m ; j++ ){
LL temp = sum[j][1] - sum[i-1][1];
res = max(res,temp);
for( int k = 2 ; k <= n ; k++ ){
temp = max(temp , 0LL) + (sum[j][k] - sum[i-1][k]) ;
res = max(res,temp);
}
}
}
printf("%lld\n",res);
return 0 ;
}