51nod1076 2条不相交的路径

本文介绍了一种用于寻找无向图中不相交路径的算法——边双连通分量算法。通过该算法可以判断两个顶点间是否存在两条不相交的路径。文章详细解释了算法的实现步骤,并提供了完整的C++代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
给出一个无向图G的顶点V和边E。进行Q次查询,查询从G的某个顶点V[s]到另一个顶点V[t],是否存在2条不相交的路径。(两条路径不经过相同的边)
(注,无向图中不存在重边,也就是说确定起点和终点,他们之间最多只有1条路)
Input
第1行:2个数M N,中间用空格分开,M是顶点的数量,N是边的数量。(2 <= M <= 25000, 1 <= N <= 50000)
第2 - N + 1行,每行2个数,中间用空格分隔,分别是N条边的起点和终点的编号。例如2 4表示起点为2,终点为4,由于是无向图,所以从4到2也是可行的路径。
第N + 2行,一个数Q,表示后面将进行Q次查询。(1 <= Q <= 50000)
第N + 3 - N + 2 + Q行,每行2个数s, t,中间用空格分隔,表示查询的起点和终点。
Output
共Q行,如果从s到t存在2条不相交的路径则输出Yes,否则输出No。
Input示例
4 4
1 2
2 3
1 3
1 4
5
1 2
2 3
3 1
2 4
1 4
Output示例
Yes
Yes
Yes
No
No
思路:边双连通分量。
Code:
#include <bits/stdc++.h>
using namespace std;
const int AX = 1e5+6;
int head[AX] , DFN[AX] , LOW[AX] , cutEdge[AX];
map<int,int>mp;
int n , m ;
int index , tot;
struct Node{
	int u,v;
	int next1;
}G[AX];
int id;
void init( ){
	tot = 0 ;
	id = 0;
	memset( head , -1 , sizeof(head));
}
void add( int u , int v ){
	G[tot].u = u ; G[tot].v = v;
	G[tot].next1 = head[u];
	head[u] = tot ++;

	G[tot].u = v; G[tot].v = u;
	G[tot].next1 = head[v];
	head[v] = tot++;
}

void tarjan( int x , int fa ){
	LOW[x] = DFN[x] = ++index;
	for( int i = head[x] ; ~i ; i = G[i].next1 ){
		if( !DFN[G[i].v] ){
			tarjan( G[i].v , x );
			LOW[x] = min( LOW[x] , LOW[G[i].v] );
			if( LOW[G[i].v] > DFN[x] ){
				cutEdge[i] = cutEdge[i^1] = 1;
			}
		}else if( G[i].v != fa ){
			LOW[x] = min( LOW[x] , DFN[G[i].v] );
		}
	}
} 


void Find_CutEage(){
	index = 0 ;
	memset( LOW , 0 , sizeof(LOW));
	memset( DFN , 0 , sizeof(DFN));
	memset( cutEdge , 0 , sizeof(cutEdge));
	for( int i = 1 ; i <= n ; i++ ){
		if( !DFN[i] ){
			tarjan( i , -1 );
		}
	}
}

void dfs( int x ){
	DFN[x] = 1;
	for( int i = head[x] ; ~i ; i = G[i].next1 ){
		if( !cutEdge[i] ){
			cutEdge[i] = cutEdge[i^1] = 1;
			mp[x] = mp[G[i].v] = id;
			if( !DFN[G[i].v] ) dfs(G[i].v);
		}
	}
}

void BccEdge(){
	memset(DFN, 0 , sizeof(DFN));
	for( int i = 1; i <= n ; i ++ ){
		if( !DFN[i] ){
			id ++ ;
			dfs(i);
		}
	}
}

int main(){	
	cin >> n >> m ;
	int x , y;
	init();
	for( int i = 0 ; i < m ; i ++ ){
		cin >> x >> y;
		add(x ,y);
	}
	Find_CutEage();
	BccEdge();
	int q;
	cin >> q;

	while(q--){
		cin >> x >> y;
		if(  mp[x] && mp[y] && mp[x] == mp[y]){
			printf("Yes\n");
		}else{
			printf("No\n");
		}
	}
	return 0 ;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值