一个长度为N的数组A,从A中选出若干个数,使得这些数的和是N的倍数。
例如:N = 8,数组A包括:2 5 6 3 18 7 11 19,可以选2 6,因为2 + 6 = 8,是8的倍数。
Input
第1行:1个数N,N为数组的长度,同时也是要求的倍数。(2 <= N <= 50000) 第2 - N + 1行:数组A的元素。(0 < A[i] <= 10^9)
Output
如果没有符合条件的组合,输出No Solution。 第1行:1个数S表示你所选择的数的数量。 第2 - S + 1行:每行1个数,对应你所选择的数。
Input示例
8 2 5 6 3 18 7 11 19
Output示例
2 2 6
思路:n个数选若干数是n的倍数,那么这几个数的和%n一定为0,所以记录前缀和%n,如果有0,那么这一段就满足.如果没有0,就找重复出现的数字(如果重复出现,那么这两个数字间的一段和一定为n的倍数)
另外,不存在找不到的情况。(因为对n取模,如果不出现0,所有的数%n的结果只可能是1-n-1,现在有n个数,总会有两个数%n结果相同(抽屉定理))。
Code:
#include <bits/stdc++.h>
using namespace std;
const int AX = 5e4+6;
int a[AX];
int vis[AX];
int main(){
int n ;
ios::sync_with_stdio(false); cin.tie(0);
cin >> n ;
for( int i = 1 ; i <= n ; i ++ ){
cin >> a[i];
}
long long sum = 0LL;
int k ;
int i ;
for( i = 1 ; i <= n ; i++ ){
sum += a[i];
sum %= n ;
if( sum == 0 || vis[sum] ){
k = vis[sum];
break;
}
vis[sum] = i;
}
cout << i - k << endl;
for( int j = k + 1 ; j <= i ; j ++ ){
cout << a[j] << endl;
}
return 0 ;
}
探讨了如何从长度为N的数组中选取若干数使其和为N的倍数的问题,通过记录前缀和并利用抽屉原理解决。
4万+

被折叠的 条评论
为什么被折叠?



