一个长度为M的正整数数组A,表示从左向右的地形高度。测试一种加农炮,炮弹平行于地面从左向右飞行,高度为H,如果某处地形的高度大于等于炮弹飞行的高度H(A[i] >= H),炮弹会被挡住并落在i - 1处,则A[i - 1] + 1。如果H <= A[0],则这个炮弹无效,如果H > 所有的A[i],这个炮弹也无效。现在给定N个整数的数组B代表炮弹高度,计算出最后地形的样子。
例如:地形高度A = {1, 2, 0, 4, 3, 2, 1, 5, 7}, 炮弹高度B = {2, 8, 0, 7, 6, 5, 3, 4, 5, 6, 5},最终得到的地形高度为:{2, 2, 2, 4, 3, 3, 5, 6, 7}。
Input
第1行:2个数M, N中间用空格分隔,分别为数组A和B的长度(1 <= m, n <= 50000) 第2至M + 1行:每行1个数,表示对应的地形高度(0 <= A[i] <= 1000000)。 第M + 2至N + M + 1行,每行1个数,表示炮弹的高度(0 <= B[i] <= 1000000)。
Output
输出共M行,每行一个数,对应最终的地形高度
思路:暴力就不说了,都懂。线段树解的话就是维护一个最大值的线段树,然后没取出一个炮弹,就查询最早在哪个区间被拦截,然后返回索引pos那么,a[pos-1]的地方就+1,然后更新树。
还有就是先预处理出每个地形什么样的炮弹能够过来,然后二分查找炮弹能够达到的位置。
Code: //线段树
#include <bits/stdc++.h>
using namespace std;
const int AX = 5e4+66;
int a[AX];
int b[AX];
int c[AX<<2];
void pushUp(int rt){
c[rt] = max( c[rt<<1] , c[(rt<<1)|1] );
}
void build( int rt , int l , int r ){
if( l == r ){
c[rt] = a[l];
return;
}
int m = ( l + r ) >> 1;
build( rt << 1 , l , m );
build( (rt << 1) | 1 , m + 1, r );
pushUp(rt);
}
int query( int rt , int l , int r , int v ){
if( l == r ){
return l ;
}
int m = ( l + r ) >> 1;
if( c[rt<<1] >= v ){
query( rt << 1 , l , m , v );
}else{
query( (rt << 1) | 1 , m + 1, r , v);
}
}
void update( int rt , int l , int r , int x ){
if( l == r ){
c[rt] = a[l];
return;
}
int m = ( l + r ) >> 1 ;
if( x <= m ){
update( rt << 1 , l , m , x );
}else{
update( (rt<<1)|1 , m + 1, r , x );
}
pushUp(rt);
}
int main(){
ios_base::sync_with_stdio(false) ;
cin.tie(0);
int n , m ;
cin >> n >> m ;
int x ;
for( int i = 1 ; i <= n ; i++ ){
cin >> a[i];
}
build( 1 , 1 , n );
for( int i = 0 ; i < m ; i++ ){
cin >> x;
if( x <= a[1] || x > c[1] ) continue;
int pos = query( 1 , 1 , n , x );
a[pos-1]++;
update( 1,1,n,pos-1);
}
for( int i = 1 ; i <= n ; i++ ){
cout << a[i] << endl;
}
return 0;
}
Code: // 二分
/*
#include <bits/stdc++.h>
using namespace std;
const int AX = 5e4+66;
int a[AX];
int b[AX];
int c[AX<<2];
void pushUp(int rt){
c[rt] = max( c[rt<<1] , c[(rt<<1)|1] );
}
void build( int rt , int l , int r ){
if( l == r ){
c[rt] = a[l];
return;
}
int m = ( l + r ) >> 1;
build( rt << 1 , l , m );
build( (rt << 1) | 1 , m + 1, r );
pushUp(rt);
}
int query( int rt , int l , int r , int v ){
if( l == r ){
return l ;
}
int m = ( l + r ) >> 1;
if( c[rt<<1] >= v ){
query( rt << 1 , l , m , v );
}else{
query( (rt << 1) | 1 , m + 1, r , v);
}
}
void update( int rt , int l , int r , int x ){
if( l == r ){
c[rt] = a[l];
return;
}
int m = ( l + r ) >> 1 ;
if( x <= m ){
update( rt << 1 , l , m , x );
}else{
update( (rt<<1)|1 , m + 1, r , x );
}
pushUp(rt);
}
int main(){
ios_base::sync_with_stdio(false) ;
cin.tie(0);
int n , m ;
cin >> n >> m ;
int x ;
for( int i = 1 ; i <= n ; i++ ){
cin >> a[i];
}
build( 1 , 1 , n );
for( int i = 0 ; i < m ; i++ ){
cin >> x;
if( x <= a[1] || x > c[1] ) continue;
int pos = query( 1 , 1 , n , x );
a[pos-1]++;
update( 1,1,n,pos-1);
}
for( int i = 1 ; i <= n ; i++ ){
cout << a[i] << endl;
}
return 0;
}
*/
#include <bits/stdc++.h>
using namespace std;
const int AX = 5e4+66;
int a[AX];
int b[AX];
int c[AX];
int main(){
ios_base::sync_with_stdio(false) ;
cin.tie(0);
int n , m ;
cin >> n >> m ;
int tmp = 0 ;
for( int i = 0 ; i < n ; i++ ){
cin >> a[i];
tmp = max( tmp , a[i] );
c[i] = tmp;
}
int x ;
for( int i = 0 ; i < m ; i++ ){
cin >> x;
if( x > tmp || x <= a[0] ) continue;
int pos = lower_bound( c + 1 , c + n + 1 , x ) - c;
a[pos-1] ++;
c[pos-1] = max( c[pos-1] , a[pos-1] );
}
for( int i = 0 ; i < n ; i++ ){
cout << a[i] << endl;
}
return 0 ;
}