hdu2199 Can you solve this equation? 二分+精度

本文介绍了一种通过二分查找法求解特定多项式方程的数值解的方法,并提供了一个C++实现示例,该方法适用于求解形式为8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 = Y,在[0, 100]区间内的实数解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Can you solve this equation?

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 23715    Accepted Submission(s): 10245


Problem Description
Now,given the equation 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == Y,can you find its solution between 0 and 100;
Now please try your lucky.
 

Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases. Then T lines follow, each line has a real number Y (fabs(Y) <= 1e10);
 

Output
For each test case, you should just output one real number(accurate up to 4 decimal places),which is the solution of the equation,or “No solution!”,if there is no solution for the equation between 0 and 100.
 

Sample Input
2 100 -4
 

Sample Output
1.6152
No solution!

思路:由于函数是单调的,所以可以二分答案,这里精度控制在1e6-1e7可以过。
Code:
#include <bits/stdc++.h>
#define LL long long 
#define INF 1e-6
using namespace std;
double f ( double x ){
    double ans = 8.0 * x *x * x * x + 7.0 *x*x*x + 2.0 *x*x+3.0*x+6.0;
    return ans ;    
}
int main(){
    int n;
    cin >> n ;
    double y;
    while( n-- ){
        cin >> y ;
        double l = 0.0 , r = 100.0;
        if( f(l) > y || f(r) < y ){
            cout<<"No solution!"<<endl;
        }else{
            while( r - l > 1e-7 ){
                double mid = ( l + r ) / 2.0;
                double re = f(mid);
                if( re > y ){
                    r = mid - 1e-7;
                }else{
                    l = mid + 1e-7 ;
                }
            }
            printf("%.4lf\n", (l+r)/2.0);
        }
    }
    return 0 ;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值