计算几何之皮克定理的应用+线段上整数点个数+求三角形面积

本文介绍了一种使用皮克定理计算由整数坐标定义的多边形面积的方法。通过分析多边形内部和边界上的整数点数,结合叉积原理求得面积,并给出具体实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GYM-G
思路:皮克定理 : s = in + on / 2 - 1
其中 s为多边形面积, in为在多边形内部的点数,on为在多边形边界上的点数 。都为整数点数。
根据叉积求面积。
on可以通过 gcd( a.x - b.x , a.y - b.y )得到,一个线段上的整数点数(gcd( a.x - b.x , a.y , b.y ))。
Code:

#include <bits/stdc++.h>
#define LL long long
using namespace std;
const int AX = 1e5 + 666 ; 
struct Node{
	LL x , y ;
	double operator ^ ( const Node &b)const{  
		return x * b.y - y * b.x ;  
	}  
}p[AX];
int n ;
int gcd( int a , int b ){
	return !b ? a : gcd( b , a % b ) ;
}
double getArea(){
	double res = 0.0 ;
	for(int i = 0; i < n ; i++)
		res += ( p[i] ^ p[(i+1)%n] ) / 2 ;
	return fabs(res);
}
int main(){
	scanf("%d",&n) ;
	for( int i = 0 ; i < n ; i++ ){
		scanf("%lld%lld",&p[i].x,&p[i].y) ;
	}
	double s = getArea() ; 
	LL on = 0LL ;
	for( int i = 0 ; i < n ; i++ ){
		on += gcd( abs( p[i].x - p[(i+1)%n].x ) , abs( p[i].y - p[(i+1)%n].y ) ) ;
	}
	LL in = (LL)( 2 * s + 2 - on ) / 2LL ; // s = in + on / 2 - 1.0 ;
	printf("%lld\n",in);
	return 0 ; 
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值