


default search action
26. NIPS 2013: Lake Tahoe, Nevada, United States
- Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, Kilian Q. Weinberger:

Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States. 2013 - David López-Paz, Philipp Hennig, Bernhard Schölkopf:

The Randomized Dependence Coefficient. 1-9 - Alessandro Perina, Nebojsa Jojic, Manuele Bicego, Andrzej Truski:

Documents as multiple overlapping windows into grids of counts. 10-18 - Wenhao Zhang, Si Wu:

Reciprocally Coupled Local Estimators Implement Bayesian Information Integration Distributively. 19-27 - Guang-Tong Zhou, Tian Lan, Arash Vahdat, Greg Mori:

Latent Maximum Margin Clustering. 28-36 - Martin Mevissen, Emanuele Ragnoli, Jia Yuan Yu:

Data-driven Distributionally Robust Polynomial Optimization. 37-45 - Marcus Rohrbach, Sandra Ebert, Bernt Schiele

:
Transfer Learning in a Transductive Setting. 46-54 - Ali Borji, Laurent Itti:

Bayesian optimization explains human active search. 55-63 - Yu-Xiang Wang, Huan Xu, Chenlei Leng:

Provable Subspace Clustering: When LRR meets SSC. 64-72 - Hossein Azari Soufiani, Hansheng Diao, Zhenyu Lai, David C. Parkes:

Generalized Random Utility Models with Multiple Types. 73-81 - Xinhua Zhang, Yaoliang Yu, Dale Schuurmans:

Polar Operators for Structured Sparse Estimation. 82-90 - Yaoliang Yu:

On Decomposing the Proximal Map. 91-99 - Liam MacDermed, Charles L. Isbell Jr.:

Point Based Value Iteration with Optimal Belief Compression for Dec-POMDPs. 100-108 - Ilya O. Tolstikhin, Yevgeny Seldin:

PAC-Bayes-Empirical-Bernstein Inequality. 109-117 - Chen-Ping Yu, Wen-Yu Hua, Dimitris Samaras, Gregory J. Zelinsky:

Modeling Clutter Perception using Parametric Proto-object Partitioning. 118-126 - Marcelo Fiori, Pablo Sprechmann, Joshua T. Vogelstein, Pablo Musé, Guillermo Sapiro:

Robust Multimodal Graph Matching: Sparse Coding Meets Graph Matching. 127-135 - Elias Bareinboim, Sanghack Lee, Vasant G. Honavar, Judea Pearl:

Transportability from Multiple Environments with Limited Experiments. 136-144 - Amit Daniely, Nati Linial, Shai Shalev-Shwartz:

More data speeds up training time in learning halfspaces over sparse vectors. 145-153 - Jonas Peters, Dominik Janzing, Bernhard Schölkopf:

Causal Inference on Time Series using Restricted Structural Equation Models. 154-162 - Karen Simonyan, Andrea Vedaldi, Andrew Zisserman:

Deep Fisher Networks for Large-Scale Image Classification. 163-171 - Lei Shi:

Sparse Additive Text Models with Low Rank Background. 172-180 - Chong Wang, Xi Chen, Alexander J. Smola, Eric P. Xing:

Variance Reduction for Stochastic Gradient Optimization. 181-189 - Michiel Hermans, Benjamin Schrauwen:

Training and Analysing Deep Recurrent Neural Networks. 190-198 - Jeffrey W. Miller, Matthew T. Harrison:

A simple example of Dirichlet process mixture inconsistency for the number of components. 199-206 - Sergey Levine, Vladlen Koltun:

Variational Policy Search via Trajectory Optimization. 207-215 - Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne, Karsten M. Borgwardt:

Scalable kernels for graphs with continuous attributes. 216-224 - Ulrike von Luxburg, Morteza Alamgir:

Density estimation from unweighted k-nearest neighbor graphs: a roadmap. 225-233 - Jamie Shotton, Toby Sharp, Pushmeet Kohli, Sebastian Nowozin, John M. Winn, Antonio Criminisi:

Decision Jungles: Compact and Rich Models for Classification. 234-242 - Zhenwen Dai, Georgios Exarchakis, Jörg Lücke:

What Are the Invariant Occlusive Components of Image Patches? A Probabilistic Generative Approach. 243-251 - Prashanth L. A., Mohammad Ghavamzadeh:

Actor-Critic Algorithms for Risk-Sensitive MDPs. 252-260 - Isik Baris Fidaner, Ali Taylan Cemgil:

Summary Statistics for Partitionings and Feature Allocations. 261-269 - Lee H. Dicker, Dean P. Foster:

One-shot learning and big data with n=2. 270-278 - Michalis K. Titsias, Miguel Lázaro-Gredilla:

Variational Inference for Mahalanobis Distance Metrics in Gaussian Process Regression. 279-287 - Cristina Savin, Peter Dayan, Máté Lengyel:

Correlations strike back (again): the case of associative memory retrieval. 288-296 - Zhuo Wang, Alan A. Stocker, Daniel D. Lee:

Optimal Neural Population Codes for High-dimensional Stimulus Variables. 297-305 - Ryan D. Turner, Steven Bottone, Clay J. Stanek:

Online Variational Approximations to non-Exponential Family Change Point Models: With Application to Radar Tracking. 306-314 - Rie Johnson, Tong Zhang:

Accelerating Stochastic Gradient Descent using Predictive Variance Reduction. 315-323 - Jason D. Lee, Ran Gilad-Bachrach, Rich Caruana:

Using multiple samples to learn mixture models. 324-332 - Tzu-Kuo Huang, Jeff G. Schneider:

Learning Hidden Markov Models from Non-sequence Data via Tensor Decomposition. 333-341 - Jason D. Lee, Yuekai Sun, Jonathan E. Taylor:

On model selection consistency of penalized M-estimators: a geometric theory. 342-350 - Stefan Wager, Sida Wang, Percy Liang:

Dropout Training as Adaptive Regularization. 351-359 - Paramveer S. Dhillon, Yichao Lu, Dean P. Foster, Lyle H. Ungar:

New Subsampling Algorithms for Fast Least Squares Regression. 360-368 - Yichao Lu, Paramveer S. Dhillon, Dean P. Foster, Lyle H. Ungar:

Faster Ridge Regression via the Subsampled Randomized Hadamard Transform. 369-377 - Shai Shalev-Shwartz, Tong Zhang:

Accelerated Mini-Batch Stochastic Dual Coordinate Ascent. 378-385 - Bruno Scherrer:

Improved and Generalized Upper Bounds on the Complexity of Policy Iteration. 386-394 - Dahua Lin:

Online Learning of Nonparametric Mixture Models via Sequential Variational Approximation. 395-403 - Jiashi Feng, Huan Xu, Shuicheng Yan:

Online Robust PCA via Stochastic Optimization. 404-412 - Fabian H. Sinz, Anna Stockl, Jan Grewe, Jan Benda:

Least Informative Dimensions. 413-421 - Junming Yin, Qirong Ho, Eric P. Xing:

A Scalable Approach to Probabilistic Latent Space Inference of Large-Scale Networks. 422-430 - Gilles Louppe, Louis Wehenkel, Antonio Sutera, Pierre Geurts:

Understanding variable importances in forests of randomized trees. 431-439 - Brian McWilliams, David Balduzzi, Joachim M. Buhmann:

Correlated random features for fast semi-supervised learning. 440-448 - Trevor Campbell, Miao Liu, Brian Kulis, Jonathan P. How, Lawrence Carin:

Dynamic Clustering via Asymptotics of the Dependent Dirichlet Process Mixture. 449-457 - Yaoliang Yu:

Better Approximation and Faster Algorithm Using the Proximal Average. 458-466 - Mahito Sugiyama, Karsten M. Borgwardt:

Rapid Distance-Based Outlier Detection via Sampling. 467-475 - Po-Ling Loh, Martin J. Wainwright:

Regularized M-estimators with nonconvexity: Statistical and algorithmic theory for local optima. 476-484 - Carlos J. Becker, C. Mario Christoudias, Pascal Fua:

Non-Linear Domain Adaptation with Boosting. 485-493 - Carl Doersch, Abhinav Gupta, Alexei A. Efros:

Mid-level Visual Element Discovery as Discriminative Mode Seeking. 494-502 - Assaf Glazer, Michael Lindenbaum, Shaul Markovitch:

q-OCSVM: A q-Quantile Estimator for High-Dimensional Distributions. 503-511 - Sivan Sabato, Anand D. Sarwate, Nati Srebro:

Auditing: Active Learning with Outcome-Dependent Query Costs. 512-520 - José Bento, Nate Derbinsky, Javier Alonso-Mora, Jonathan S. Yedidia:

A message-passing algorithm for multi-agent trajectory planning. 521-529 - Yichuan Tang, Ruslan Salakhutdinov:

Learning Stochastic Feedforward Neural Networks. 530-538 - Srinivas C. Turaga, Lars Buesing, Adam M. Packer, Henry Dalgleish, Noah Pettit, Michael Häusser, Jakob H. Macke:

Inferring neural population dynamics from multiple partial recordings of the same neural circuit. 539-547 - Ian J. Goodfellow, Mehdi Mirza, Aaron C. Courville, Yoshua Bengio:

Multi-Prediction Deep Boltzmann Machines. 548-556 - Vibhav Vineet, Carsten Rother, Philip H. S. Torr:

Higher Order Priors for Joint Intrinsic Image, Objects, and Attributes Estimation. 557-565 - Christophe Schülke, Francesco Caltagirone, Florent Krzakala

, Lenka Zdeborová:
Blind Calibration in Compressed Sensing using Message Passing Algorithms. 566-574 - Ashesh Jain, Brian Wojcik, Thorsten Joachims, Ashutosh Saxena:

Learning Trajectory Preferences for Manipulators via Iterative Improvement. 575-583 - Huahua Wang, Arindam Banerjee, Cho-Jui Hsieh, Pradeep Ravikumar, Inderjit S. Dhillon:

Large Scale Distributed Sparse Precision Estimation. 584-592 - Cheston Tan, Jedediah M. Singer, Thomas Serre, David L. Sheinberg, Tomaso A. Poggio:

Neural representation of action sequences: how far can a simple snippet-matching model take us? 593-601 - Siwei Lyu, Xin Wang:

On Algorithms for Sparse Multi-factor NMF. 602-610 - Eunho Yang, Pradeep Ravikumar:

Dirty Statistical Models. 611-619 - Jason Chang, John W. Fisher III:

Parallel Sampling of DP Mixture Models using Sub-Cluster Splits. 620-628 - Tianbao Yang:

Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent. 629-637 - Sébastien Bubeck, Che-Yu Liu:

Prior-free and prior-dependent regret bounds for Thompson Sampling. 638-646 - Justin Domke:

Structured Learning via Logistic Regression. 647-655 - Parikshit Ram, Alexander G. Gray:

Which Space Partitioning Tree to Use for Search? 656-664 - Justin Domke, Xianghang Liu:

Projecting Ising Model Parameters for Fast Mixing. 665-673 - Mehrdad Mahdavi, Lijun Zhang, Rong Jin:

Mixed Optimization for Smooth Functions. 674-682 - Eunho Yang, Pradeep Ravikumar, Genevera I. Allen, Zhandong Liu:

Conditional Random Fields via Univariate Exponential Families. 683-691 - Edoardo M. Airoldi, Thiago B. Costa, Stanley H. Chan:

Stochastic blockmodel approximation of a graphon: Theory and consistent estimation. 692-700 - Shiau Hong Lim, Huan Xu, Shie Mannor:

Reinforcement Learning in Robust Markov Decision Processes. 701-709 - Ke Hou, Zirui Zhou, Anthony Man-Cho So, Zhi-Quan Luo:

On the Linear Convergence of the Proximal Gradient Method for Trace Norm Regularization. 710-718 - Hesham Mostafa, Lorenz K. Müller, Giacomo Indiveri:

Recurrent networks of coupled Winner-Take-All oscillators for solving constraint satisfaction problems. 719-727 - Wenjie Luo, Alexander G. Schwing, Raquel Urtasun:

Latent Structured Active Learning. 728-736 - Nicolò Cesa-Bianchi, Claudio Gentile, Giovanni Zappella:

A Gang of Bandits. 737-745 - Daniel Hernández-Lobato, José Miguel Hernández-Lobato:

Learning Feature Selection Dependencies in Multi-task Learning. 746-754 - Wojciech Zaremba, Arthur Gretton, Matthew B. Blaschko:

B-test: A Non-parametric, Low Variance Kernel Two-sample Test. 755-763 - Jiashi Feng, Huan Xu, Shie Mannor, Shuicheng Yan:

Online PCA for Contaminated Data. 764-772 - Francis R. Bach, Eric Moulines:

Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n). 773-781 - Ziteng Wang, Kai Fan, Jiaqi Zhang, Liwei Wang:

Efficient Algorithm for Privately Releasing Smooth Queries. 782-790 - Anshumali Shrivastava, Ping Li:

Beyond Pairwise: Provably Fast Algorithms for Approximate k-Way Similarity Search. 791-799 - Raphaël Bailly, Xavier Carreras, Ariadna Quattoni:

Unsupervised Spectral Learning of Finite State Transducers. 800-808 - Naiyan Wang, Dit-Yan Yeung:

Learning a Deep Compact Image Representation for Visual Tracking. 809-817 - Ferran Diego Andilla, Fred A. Hamprecht:

Learning Multi-level Sparse Representations. 818-826 - Grani Adiwena Hanasusanto, Daniel Kuhn:

Robust Data-Driven Dynamic Programming. 827-835 - Akshay Krishnamurthy, Aarti Singh:

Low-Rank Matrix and Tensor Completion via Adaptive Sampling. 836-844 - Adrien Todeschini, François Caron, Marie Chavent:

Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms. 845-853 - Eshcar Hillel, Zohar Shay Karnin, Tomer Koren, Ronny Lempel, Oren Somekh:

Distributed Exploration in Multi-Armed Bandits. 854-862 - Wouter M. Koolen:

The Pareto Regret Frontier. 863-871 - Shaodan Zhai, Tian Xia, Ming Tan, Shaojun Wang:

Direct 0-1 Loss Minimization and Margin Maximization with Boosting. 872-880 - Asrar Ahmed, Pradeep Varakantham, Yossiri Adulyasak, Patrick Jaillet:

Regret based Robust Solutions for Uncertain Markov Decision Processes. 881-889 - Chris Hinrichs, Vamsi K. Ithapu, Qinyuan Sun, Sterling C. Johnson, Vikas Singh:

Speeding up Permutation Testing in Neuroimaging. 890-898 - Yoshua Bengio, Li Yao, Guillaume Alain, Pascal Vincent:

Generalized Denoising Auto-Encoders as Generative Models. 899-907 - Pablo Sprechmann, Roee Litman, Tal Ben Yakar, Alexander M. Bronstein, Guillermo Sapiro:

Supervised Sparse Analysis and Synthesis Operators. 908-916 - Ryosuke Matsushita, Toshiyuki Tanaka:

Low-rank matrix reconstruction and clustering via approximate message passing. 917-925 - Richard Socher, Danqi Chen, Christopher D. Manning, Andrew Y. Ng:

Reasoning With Neural Tensor Networks for Knowledge Base Completion. 926-934 - Richard Socher, Milind Ganjoo, Christopher D. Manning, Andrew Y. Ng:

Zero-Shot Learning Through Cross-Modal Transfer. 935-943 - Mohsen Bayati, Murat A. Erdogdu, Andrea Montanari:

Estimating LASSO Risk and Noise Level. 944-952 - David J. Weiss, Ben Taskar:

Learning Adaptive Value of Information for Structured Prediction. 953-961 - Dae Il Kim, Prem Gopalan, David M. Blei, Erik B. Sudderth:

Efficient Online Inference for Bayesian Nonparametric Relational Models. 962-970 - Botond Cseke, Manfred Opper, Guido Sanguinetti:

Approximate inference in latent Gaussian-Markov models from continuous time observations. 971-979 - Lijun Zhang, Mehrdad Mahdavi, Rong Jin:

Linear Convergence with Condition Number Independent Access of Full Gradients. 980-988 - Divyanshu Vats, Richard G. Baraniuk:

When in Doubt, SWAP: High-Dimensional Sparse Recovery from Correlated Measurements. 989-997 - Raif M. Rustamov, Leonidas J. Guibas:

Wavelets on Graphs via Deep Learning. 998-1006 - Wojciech Samek, Duncan A. J. Blythe, Klaus-Robert Müller, Motoaki Kawanabe:

Robust Spatial Filtering with Beta Divergence. 1007-1015 - Fajwel Fogel, Rodolphe Jenatton, Francis R. Bach, Alexandre d'Aspremont:

Convex Relaxations for Permutation Problems. 1016-1024 - Josip Djolonga, Andreas Krause, Volkan Cevher:

High-Dimensional Gaussian Process Bandits. 1025-1033 - Subhaneil Lahiri, Surya Ganguli:

A memory frontier for complex synapses. 1034-1042 - Tim Roughgarden, Michael J. Kearns:

Marginals-to-Models Reducibility. 1043-1051 - Nima Taghipour, Jesse Davis, Hendrik Blockeel:

First-order Decomposition Trees. 1052-1060 - Fabian L. Wauthier, Nebojsa Jojic, Michael I. Jordan:

A Comparative Framework for Preconditioned Lasso Algorithms. 1061-1069 - Jie Wang, Jiayu Zhou, Peter Wonka, Jieping Ye:

Lasso Screening Rules via Dual Polytope Projection. 1070-1078 - Yuening Hu, Jordan L. Boyd-Graber, Hal Daumé III, Z. Irene Ying:

Binary to Bushy: Bayesian Hierarchical Clustering with the Beta Coalescent. 1079-1087 - George H. Chen, Stanislav Nikolov, Devavrat Shah:

A Latent Source Model for Nonparametric Time Series Classification. 1088-1096 - Yanshuai Cao, Marcus A. Brubaker, David J. Fleet, Aaron Hertzmann:

Efficient Optimization for Sparse Gaussian Process Regression. 1097-1105 - Viet-An Nguyen, Jordan L. Boyd-Graber, Philip Resnik:

Lexical and Hierarchical Topic Regression. 1106-1114 - Mehrdad Mahdavi, Tianbao Yang, Rong Jin:

Stochastic Convex Optimization with Multiple Objectives. 1115-1123 - Dino Sejdinovic, Arthur Gretton, Wicher Bergsma:

A Kernel Test for Three-Variable Interactions. 1124-1132 - Michael C. Hughes, Erik B. Sudderth:

Memoized Online Variational Inference for Dirichlet Process Mixture Models. 1133-1141 - Liming Wang, David E. Carlson, Miguel R. D. Rodrigues, David Wilcox, A. Robert Calderbank, Lawrence Carin:

Designed Measurements for Vector Count Data. 1142-1150 - Yuhong Guo:

Robust Transfer Principal Component Analysis with Rank Constraints. 1151-1159 - Nicolò Cesa-Bianchi, Ofer Dekel, Ohad Shamir:

Online Learning with Switching Costs and Other Adaptive Adversaries. 1160-1168 - Kareem Amin, Afshin Rostamizadeh, Umar Syed:

Learning Prices for Repeated Auctions with Strategic Buyers. 1169-1177 - Miaomiao Zhang, P. Thomas Fletcher:

Probabilistic Principal Geodesic Analysis. 1178-1186 - Adel Javanmard, Andrea Montanari:

Confidence Intervals and Hypothesis Testing for High-Dimensional Statistical Models. 1187-1195 - Nagarajan Natarajan, Inderjit S. Dhillon, Pradeep Ravikumar, Ambuj Tewari:

Learning with Noisy Labels. 1196-1204 - Erich Kummerfeld, David Danks:

Tracking Time-varying Graphical Structure. 1205-1213 - Kohei Hayashi, Ryohei Fujimaki:

Factorized Asymptotic Bayesian Inference for Latent Feature Models. 1214-1222 - Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B. Gibbons, Garth A. Gibson, Gregory R. Ganger, Eric P. Xing:

More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server. 1223-1231 - Jie Liu, David Page:

Bayesian Estimation of Latently-grouped Parameters in Undirected Graphical Models. 1232-1240 - Navid Zolghadr, Gábor Bartók, Russell Greiner, András György, Csaba Szepesvári:

Online Learning with Costly Features and Labels. 1241-1249 - Eftychios A. Pnevmatikakis, Liam Paninski:

Sparse nonnegative deconvolution for compressive calcium imaging: algorithms and phase transitions. 1250-1258 - Min Xiao, Yuhong Guo:

A Novel Two-Step Method for Cross Language Representation Learning. 1259-1267 - Tamir Hazan, Subhransu Maji, Tommi S. Jaakkola:

On Sampling from the Gibbs Distribution with Random Maximum A-Posteriori Perturbations. 1268-1276 - Karthika Mohan, Judea Pearl, Jin Tian:

Graphical Models for Inference with Missing Data. 1277-1285 - Boqing Gong, Kristen Grauman, Fei Sha:

Reshaping Visual Datasets for Domain Adaptation. 1286-1294 - Maria-Florina Balcan, Vitaly Feldman:

Statistical Active Learning Algorithms. 1295-1303 - Benjamin Shababo, Brooks Paige, Ari Pakman, Liam Paninski:

Bayesian Inference and Online Experimental Design for Mapping Neural Microcircuits. 1304-1312 - Stefanie Jegelka, Francis R. Bach, Suvrit Sra:

Reflection methods for user-friendly submodular optimization. 1313-1321 - Kewei Tu, Maria Pavlovskaia, Song Chun Zhu:

Unsupervised Structure Learning of Stochastic And-Or Grammars. 1322-1330 - Ryota Tomioka, Taiji Suzuki:

Convex Tensor Decomposition via Structured Schatten Norm Regularization. 1331-1339 - Yann N. Dauphin, Yoshua Bengio:

Stochastic Ratio Matching of RBMs for Sparse High-Dimensional Inputs. 1340-1348 - Jukka Corander, Tomi Janhunen, Jussi Rintanen, Henrik J. Nyman, Johan Pensar:

Learning Chordal Markov Networks by Constraint Satisfaction. 1349-1357 - Ichiro Takeuchi, Tatsuya Hongo, Masashi Sugiyama, Shinichi Nakajima:

Parametric Task Learning. 1358-1366 - Zhengdong Lu, Hang Li:

A Deep Architecture for Matching Short Texts. 1367-1375 - Christina E. Lee, Asuman E. Ozdaglar, Devavrat Shah:

Computing the Stationary Distribution Locally. 1376-1384 - Myunghwan Kim, Jure Leskovec:

Nonparametric Multi-group Membership Model for Dynamic Networks. 1385-1393 - Matteo Pirotta, Marcello Restelli, Luca Bascetta:

Adaptive Step-Size for Policy Gradient Methods. 1394-1402 - Xinghao Pan, Joseph E. Gonzalez, Stefanie Jegelka, Tamara Broderick, Michael I. Jordan:

Optimistic Concurrency Control for Distributed Unsupervised Learning. 1403-1411 - Leonidas Lefakis, François Fleuret:

Reservoir Boosting : Between Online and Offline Ensemble Learning. 1412-1420 - Xavier Bresson, Thomas Laurent, David Uminsky, James H. von Brecht:

Multiclass Total Variation Clustering. 1421-1429 - Raja Hafiz Affandi, Emily B. Fox, Ben Taskar:

Approximate Inference in Continuous Determinantal Processes. 1430-1438 - Shinichi Nakajima, Akiko Takeda, S. Derin Babacan, Masashi Sugiyama, Ichiro Takeuchi:

Global Solver and Its Efficient Approximation for Variational Bayesian Low-rank Subspace Clustering. 1439-1447 - Nathaniel Korda, Emilie Kaufmann, Rémi Munos:

Thompson Sampling for 1-Dimensional Exponential Family Bandits. 1448-1456 - Viet Cuong Nguyen, Wee Sun Lee, Nan Ye, Kian Ming Adam Chai, Hai Leong Chieu:

Active Learning for Probabilistic Hypotheses Using the Maximum Gibbs Error Criterion. 1457-1465 - Barbara Rakitsch, Christoph Lippert, Karsten M. Borgwardt, Oliver Stegle:

It is all in the noise: Efficient multi-task Gaussian process inference with structured residuals. 1466-1474 - Harish G. Ramaswamy, Shivani Agarwal, Ambuj Tewari:

Convex Calibrated Surrogates for Low-Rank Loss Matrices with Applications to Subset Ranking Losses. 1475-1483 - Qichao Que, Mikhail Belkin:

Inverse Density as an Inverse Problem: the Fredholm Equation Approach. 1484-1492 - Forest Agostinelli, Michael R. Anderson, Honglak Lee:

Adaptive Multi-Column Deep Neural Networks with Application to Robust Image Denoising. 1493-1501 - Khaled S. Refaat, Arthur Choi, Adnan Darwiche:

EDML for Learning Parameters in Directed and Undirected Graphical Models. 1502-1510 - Soravit Changpinyo, Kuan Liu, Fei Sha:

Similarity Component Analysis. 1511-1519 - Vikash K. Mansinghka, Tejas D. Kulkarni, Yura N. Perov, Joshua B. Tenenbaum:

Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs. 1520-1528 - John C. Duchi, Martin J. Wainwright, Michael I. Jordan:

Local Privacy and Minimax Bounds: Sharp Rates for Probability Estimation. 1529-1537 - David G. T. Barrett, Sophie Denève, Christian K. Machens:

Firing rate predictions in optimal balanced networks. 1538-1546 - Masayuki Karasuyama, Hiroshi Mamitsuka:

Manifold-based Similarity Adaptation for Label Propagation. 1547-1555 - Haichao Zhang, David P. Wipf:

Non-Uniform Camera Shake Removal Using a Spatially-Adaptive Sparse Penalty. 1556-1564 - Dimitris Achlioptas, Zohar Shay Karnin, Edo Liberty:

Near-Optimal Entrywise Sampling for Data Matrices. 1565-1573 - Leonid Boytsov, Bilegsaikhan Naidan:

Learning to Prune in Metric and Non-Metric Spaces. 1574-1582 - Alexander Zimin, Gergely Neu:

Online learning in episodic Markovian decision processes by relative entropy policy search. 1583-1591 - Paul Wagner:

Optimistic policy iteration and natural actor-critic: A unifying view and a non-optimality result. 1592-1600 - Charles Blundell, Yee Whye Teh:

Bayesian Hierarchical Community Discovery. 1601-1609 - Noga Alon, Nicolò Cesa-Bianchi, Claudio Gentile, Yishay Mansour:

From Bandits to Experts: A Tale of Domination and Independence. 1610-1618 - Cosma Rohilla Shalizi, Aryeh Kontorovich:

Predictive PAC Learning and Process Decompositions. 1619-1627 - Crystal Maung, Haim Schweitzer:

Pass-efficient unsupervised feature selection. 1628-1636 - Xiaoqin Zhang, Di Wang, Zhengyuan Zhou, Yi Ma:

Simultaneous Rectification and Alignment via Robust Recovery of Low-rank Tensors. 1637-1645 - Aijun Bai, Feng Wu, Xiaoping Chen:

Bayesian Mixture Modelling and Inference based Thompson Sampling in Monte-Carlo Tree Search. 1646-1654 - Tetsuro Morimura, Takayuki Osogami, Tsuyoshi Idé:

Solving inverse problem of Markov chain with partial observations. 1655-1663 - Daniele Durante, Bruno Scarpa, David B. Dunson:

Locally Adaptive Bayesian Multivariate Time Series. 1664-1672 - Yannick Schwartz, Bertrand Thirion, Gaël Varoquaux:

Mapping paradigm ontologies to and from the brain. 1673-1681 - Amin Karbasi, Amir Hesam Salavati, Amin Shokrollahi, Lav R. Varshney:

Noise-Enhanced Associative Memories. 1682-1690 - Shouyuan Chen, Michael R. Lyu, Irwin King, Zenglin Xu:

Exact and Stable Recovery of Pairwise Interaction Tensors. 1691-1699 - Evan Archer, Il Memming Park, Jonathan W. Pillow:

Bayesian entropy estimation for binary spike train data using parametric prior knowledge. 1700-1708 - Christian Albers, Maren Westkott, Klaus Pawelzik:

Perfect Associative Learning with Spike-Timing-Dependent Plasticity. 1709-1717 - Eunho Yang, Pradeep Ravikumar, Genevera I. Allen, Zhandong Liu:

On Poisson Graphical Models. 1718-1726 - Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C. Wilson, Michael I. Jordan:

Streaming Variational Bayes. 1727-1735 - José Miguel Hernández-Lobato, James Robert Lloyd, Daniel Hernández-Lobato:

Gaussian Process Conditional Copulas with Applications to Financial Time Series. 1736-1744 - Marius Pachitariu, Adam M. Packer, Noah Pettit, Henry Dalgleish, Michael Häusser, Maneesh Sahani:

Extracting regions of interest from biological images with convolutional sparse block coding. 1745-1753 - Victor Gabillon, Mohammad Ghavamzadeh, Bruno Scherrer:

Approximate Dynamic Programming Finally Performs Well in the Game of Tetris. 1754-1762 - Matthew Lawlor, Steven W. Zucker:

Third-Order Edge Statistics: Contour Continuation, Curvature, and Cortical Connections. 1763-1771 - Adhiraj Somani, Nan Ye, David Hsu, Wee Sun Lee:

DESPOT: Online POMDP Planning with Regularization. 1772-1780 - Troy Lee, Adi Shraibman:

Matrix Completion From any Given Set of Observations. 1781-1787 - Samory Kpotufe, Francesco Orabona:

Regression-tree Tuning in a Streaming Setting. 1788-1796 - Francesca Petralia, Joshua T. Vogelstein, David B. Dunson:

Multiscale Dictionary Learning for Estimating Conditional Distributions. 1797-1805 - Francesco Orabona:

Dimension-Free Exponentiated Gradient. 1806-1814 - Raman Arora, Andrew Cotter, Nati Srebro:

Stochastic Optimization of PCA with Capped MSG. 1815-1823 - Rohit Babbar, Ioannis Partalas, Éric Gaussier, Massih-Reza Amini:

On Flat versus Hierarchical Classification in Large-Scale Taxonomies. 1824-1832 - Ying Liu, Alan S. Willsky:

Learning Gaussian Graphical Models with Observed or Latent FVSs. 1833-1841 - Yangqing Jia, Joshua T. Abbott, Joseph L. Austerweil, Thomas L. Griffiths, Trevor Darrell:

Visual Concept Learning: Combining Machine Vision and Bayesian Generalization on Concept Hierarchies. 1842-1850 - Moustapha Cissé, Nicolas Usunier, Thierry Artières, Patrick Gallinari:

Robust Bloom Filters for Large MultiLabel Classification Tasks. 1851-1859 - Deepti Pachauri, Risi Kondor, Vikas Singh:

Solving the multi-way matching problem by permutation synchronization. 1860-1868 - Daniel Bartz, Klaus-Robert Müller:

Generalizing Analytic Shrinkage for Arbitrary Covariance Structures. 1869-1877 - Hanlin Goh, Nicolas Thome, Matthieu Cord, Joo-Hwee Lim:

Top-Down Regularization of Deep Belief Networks. 1878-1886 - Tamir Hazan, Subhransu Maji, Joseph Keshet, Tommi S. Jaakkola:

Learning Efficient Random Maximum A-Posteriori Predictors with Non-Decomposable Loss Functions. 1887-1895 - Yu Zhang:

Heterogeneous-Neighborhood-based Multi-Task Local Learning Algorithms. 1896-1904 - Xiaojin Zhu:

Machine Teaching for Bayesian Learners in the Exponential Family. 1905-1913 - Qiang Liu, Alexander Ihler, Mark Steyvers:

Scoring Workers in Crowdsourcing: How Many Control Questions are Enough? 1914-1922 - Stefan Mathe, Cristian Sminchisescu:

Action from Still Image Dataset and Inverse Optimal Control to Learn Task Specific Visual Scanpaths. 1923-1931 - Jasper Snoek, Richard S. Zemel, Ryan Prescott Adams:

A Determinantal Point Process Latent Variable Model for Inhibition in Neural Spiking Data. 1932-1940 - Fang Han, Han Liu:

Robust Sparse Principal Component Regression under the High Dimensional Elliptical Model. 1941-1949 - Bogdan Savchynskyy, Jörg Hendrik Kappes, Paul Swoboda, Christoph Schnörr:

Global MAP-Optimality by Shrinking the Combinatorial Search Area with Convex Relaxation. 1950-1958 - James Sharpnack, Akshay Krishnamurthy, Aarti Singh:

Near-optimal Anomaly Detection in Graphs using Lovasz Extended Scan Statistic. 1959-1967 - Agnieszka Grabska-Barwinska, Jeffrey M. Beck, Alexandre Pouget, Peter E. Latham:

Demixing odors - fast inference in olfaction. 1968-1976 - Daniel Vainsencher, Shie Mannor, Huan Xu:

Learning Multiple Models via Regularized Weighting. 1977-1985 - Anima Anandkumar, Daniel J. Hsu, Majid Janzamin, Sham M. Kakade:

When are Overcomplete Topic Models Identifiable? Uniqueness of Tensor Tucker Decompositions with Structured Sparsity. 1986-1994 - Maria-Florina Balcan, Steven Ehrlich, Yingyu Liang:

Distributed k-means and k-median clustering on general communication topologies. 1995-2003 - Kevin Swersky, Jasper Snoek, Ryan Prescott Adams:

Multi-Task Bayesian Optimization. 2004-2012 - Shahin Shahrampour, Alexander Rakhlin, Ali Jadbabaie:

Online Learning of Dynamic Parameters in Social Networks. 2013-2021 - Jinwoo Shin, Andrew E. Gelfand, Michael Chertkov:

A Graphical Transformation for Belief Propagation: Maximum Weight Matchings and Odd-Sized Cycles. 2022-2030 - Xinhua Zhang, Wee Sun Lee, Yee Whye Teh:

Learning with Invariance via Linear Functionals on Reproducing Kernel Hilbert Space. 2031-2039 - Andreas Ruttor, Philipp Batz, Manfred Opper:

Approximate Gaussian process inference for the drift function in stochastic differential equations. 2040-2048 - Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, Andreas Krause:

Distributed Submodular Maximization: Identifying Representative Elements in Massive Data. 2049-2057 - Jacob D. Abernethy, Satyen Kale:

Adaptive Market Making via Online Learning. 2058-2066 - Alessandro Rudi, Guillermo D. Cañas, Lorenzo Rosasco:

On the Sample Complexity of Subspace Learning. 2067-2075 - Karin C. Knudson, Jonathan W. Pillow:

Spike train entropy-rate estimation using hierarchical Dirichlet process priors. 2076-2084 - Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, Bart Selman:

Embed and Project: Discrete Sampling with Universal Hashing. 2085-2093 - Nitish Srivastava, Ruslan Salakhutdinov:

Discriminative Transfer Learning with Tree-based Priors. 2094-2102 - Anirban Roychowdhury, Ke Jiang, Brian Kulis:

Small-Variance Asymptotics for Hidden Markov Models. 2103-2111 - Viliam Lisý, Vojtech Kovarík, Marc Lanctot, Branislav Bosanský:

Convergence of Monte Carlo Tree Search in Simultaneous Move Games. 2112-2120 - Andrea Frome, Gregory S. Corrado, Jonathon Shlens, Samy Bengio, Jeffrey Dean, Marc'Aurelio Ranzato, Tomás Mikolov:

DeViSE: A Deep Visual-Semantic Embedding Model. 2121-2129 - Xiaoxiao Guo, Satinder Singh, Richard L. Lewis:

Reward Mapping for Transfer in Long-Lived Agents. 2130-2138 - Martin Azizyan, Aarti Singh, Larry A. Wasserman:

Minimax Theory for High-dimensional Gaussian Mixtures with Sparse Mean Separation. 2139-2147 - Misha Denil, Babak Shakibi, Laurent Dinh, Marc'Aurelio Ranzato, Nando de Freitas:

Predicting Parameters in Deep Learning. 2148-2156 - Paul Valiant, Gregory Valiant:

Estimating the Unseen: Improved Estimators for Entropy and other Properties. 2157-2165 - Behzad Golshan, John W. Byers, Evimaria Terzi:

What do row and column marginals reveal about your dataset? 2166-2174 - Benigno Uria, Iain Murray, Hugo Larochelle:

RNADE: The real-valued neural autoregressive density-estimator. 2175-2183 - Thomas Bonald, Alexandre Proutière:

Two-Target Algorithms for Infinite-Armed Bandits with Bernoulli Rewards. 2184-2192 - Rémi Gribonval, Pierre Machart:

Reconciling "priors" & "priors" without prejudice? 2193-2201 - Nikhil S. Rao, Christopher R. Cox, Robert D. Nowak, Timothy T. Rogers:

Sparse Overlapping Sets Lasso for Multitask Learning and its Application to fMRI Analysis. 2202-2210 - Daniel S. Levine, Jonathan P. How:

Sensor Selection in High-Dimensional Gaussian Trees with Nuisances. 2211-2219 - Mohammad Gheshlaghi Azar, Alessandro Lazaric, Emma Brunskill:

Sequential Transfer in Multi-armed Bandit with Finite Set of Models. 2220-2228 - Liu Yang, Jaime G. Carbonell:

Buy-in-Bulk Active Learning. 2229-2237 - James Y. Zou, Daniel J. Hsu, David C. Parkes, Ryan Prescott Adams:

Contrastive Learning Using Spectral Methods. 2238-2246 - Nils Napp, Ryan Prescott Adams:

Message Passing Inference with Chemical Reaction Networks. 2247-2255 - Daniel Russo, Benjamin Van Roy:

Eluder Dimension and the Sample Complexity of Optimistic Exploration. 2256-2264 - Andriy Mnih, Koray Kavukcuoglu:

Learning word embeddings efficiently with noise-contrastive estimation. 2265-2273 - Tuo Zhao, Han Liu:

Sparse Inverse Covariance Estimation with Calibration. 2274-2282 - Julien Mairal:

Stochastic Majorization-Minimization Algorithms for Large-Scale Optimization. 2283-2291 - Marco Cuturi:

Sinkhorn Distances: Lightspeed Computation of Optimal Transport. 2292-2300 - Miao Xu, Rong Jin, Zhi-Hua Zhou:

Speedup Matrix Completion with Side Information: Application to Multi-Label Learning. 2301-2309 - Rupesh Kumar Srivastava, Jonathan Masci, Sohrob Kazerounian, Faustino J. Gomez, Jürgen Schmidhuber:

Compete to Compute. 2310-2318 - Byungkon Kang:

Fast Determinantal Point Process Sampling with Application to Clustering. 2319-2327 - Yuchen Zhang, John C. Duchi, Michael I. Jordan, Martin J. Wainwright:

Information-theoretic lower bounds for distributed statistical estimation with communication constraints. 2328-2336 - Philip S. Thomas, William Dabney, Stephen Giguere, Sridhar Mahadevan:

Projected Natural Actor-Critic. 2337-2345 - Jacob D. Abernethy, Peter L. Bartlett, Rafael M. Frongillo, Andre Wibisono:

How to Hedge an Option Against an Adversary: Black-Scholes Pricing is Minimax Optimal. 2346-2354 - Yacine Jernite, Yonatan Halpern, David A. Sontag:

Discovering Hidden Variables in Noisy-Or Networks using Quartet Tests. 2355-2363 - Franz J. Király, Louis Theran:

Error-Minimizing Estimates and Universal Entry-Wise Error Bounds for Low-Rank Matrix Completion. 2364-2372 - Dan Rosenbaum, Daniel Zoran, Yair Weiss:

Learning the Local Statistics of Optical Flow. 2373-2381 - Gunnar Kedenburg, Raphaël Fonteneau, Rémi Munos:

Aggregating Optimistic Planning Trees for Solving Markov Decision Processes. 2382-2390 - David Pfau, Eftychios A. Pnevmatikakis, Liam Paninski:

Robust learning of low-dimensional dynamics from large neural ensembles. 2391-2399 - Min Xu, Tao Qin, Tie-Yan Liu:

Estimation Bias in Multi-Armed Bandit Algorithms for Search Advertising. 2400-2408 - Nataliya Shapovalova, Michalis Raptis, Leonid Sigal, Greg Mori:

Action is in the Eye of the Beholder: Eye-gaze Driven Model for Spatio-Temporal Action Localization. 2409-2417 - Jing Xiang, Seyoung Kim:

A* Lasso for Learning a Sparse Bayesian Network Structure for Continuous Variables. 2418-2426 - Matthias Hein, Simon Setzer, Leonardo Jost, Syama Sundar Rangapuram:

The Total Variation on Hypergraphs - Learning on Hypergraphs Revisited. 2427-2435 - Rishabh K. Iyer, Jeff A. Bilmes:

Submodular Optimization with Submodular Cover and Submodular Knapsack Constraints. 2436-2444 - Jianfei Chen, Jun Zhu, Zi Wang, Xun Zheng, Bo Zhang:

Scalable Inference for Logistic-Normal Topic Models. 2445-2453 - Il Memming Park, Evan Archer, Nicholas Priebe, Jonathan W. Pillow:

Spectral methods for neural characterization using generalized quadratic models. 2454-2462 - Il Memming Park, Evan Archer, Kenneth W. Latimer, Jonathan W. Pillow:

Universal models for binary spike patterns using centered Dirichlet processes. 2463-2471 - Tuan Anh Nguyen, Subbarao Kambhampati, Minh Binh Do:

Synthesizing Robust Plans under Incomplete Domain Models. 2472-2480 - Shaobo Han, Xuejun Liao, Lawrence Carin:

Integrated Non-Factorized Variational Inference. 2481-2489 - Ari Pakman, Liam Paninski:

Auxiliary-variable Exact Hamiltonian Monte Carlo Samplers for Binary Distributions. 2490-2498 - Aswin Raghavan, Roni Khardon, Alan Fern, Prasad Tadepalli

:
Symbolic Opportunistic Policy Iteration for Factored-Action MDPs. 2499-2507 - Yasin Abbasi-Yadkori, Peter L. Bartlett, Varun Kanade, Yevgeny Seldin, Csaba Szepesvári:

Online Learning in Markov Decision Processes with Adversarially Chosen Transition Probability Distributions. 2508-2516 - Alfredo A. Kalaitzis, Ricardo Bezerra de Andrade e Silva:

Flexible sampling of discrete data correlations without the marginal distributions. 2517-2525 - Brenden M. Lake, Ruslan Salakhutdinov, Joshua B. Tenenbaum:

One-shot learning by inverting a compositional causal process. 2526-2534 - Michel Besserve, Nikos K. Logothetis, Bernhard Schölkopf:

Statistical analysis of coupled time series with Kernel Cross-Spectral Density operators. 2535-2543 - James R. Voss, Luis Rademacher

, Mikhail Belkin:
Fast Algorithms for Gaussian Noise Invariant Independent Component Analysis. 2544-2552 - Christian Szegedy, Alexander Toshev, Dumitru Erhan:

Deep Neural Networks for Object Detection. 2553-2561 - Suvrit Sra, Reshad Hosseini:

Geometric optimisation on positive definite matrices for elliptically contoured distributions. 2562-2570 - Ping Li, Gennady Samorodnitsky, John E. Hopcroft:

Sign Cauchy Projections and Chi-Square Kernel. 2571-2579 - Fang Zhao, Yongzhen Huang, Liang Wang, Tieniu Tan:

Relevance Topic Model for Unstructured Social Group Activity Recognition. 2580-2588 - Hu Ding, Ronald Berezney, Jinhui Xu:

k-Prototype Learning for 3D Rigid Structures. 2589-2597 - Sinead Williamson, Steven N. MacEachern, Eric P. Xing:

Restricting exchangeable nonparametric distributions. 2598-2606 - Shunan Zhang, Angela J. Yu:

Forgetful Bayes and myopic planning: Human learning and decision-making in a bandit setting. 2607-2615 - Alexandros Paraschos, Christian Daniel, Jan Peters, Gerhard Neumann:

Probabilistic Movement Primitives. 2616-2624 - Shane Griffith, Kaushik Subramanian, Jonathan Scholz, Charles L. Isbell Jr., Andrea Lockerd Thomaz:

Policy Shaping: Integrating Human Feedback with Reinforcement Learning. 2625-2633 - Mark Rogers, Lei Li, Stuart Russell:

Multilinear Dynamical Systems for Tensor Time Series. 2634-2642 - Aäron van den Oord, Sander Dieleman, Benjamin Schrauwen:

Deep content-based music recommendation. 2643-2651 - Kamalika Chaudhuri, Staal Amund Vinterbo:

A Stability-based Validation Procedure for Differentially Private Machine Learning. 2652-2660 - Abbas Edalat:

Capacity of strong attractor patterns to model behavioural and cognitive prototypes. 2661-2669 - Vincent Q. Vu, Juhee Cho, Jing Lei, Karl Rohe:

Fantope Projection and Selection: A near-optimal convex relaxation of sparse PCA. 2670-2678 - Sivaraman Balakrishnan, Srivatsan Narayanan, Alessandro Rinaldo, Aarti Singh, Larry A. Wasserman:

Cluster Trees on Manifolds. 2679-2687 - Mijung Park, Jonathan W. Pillow:

Bayesian inference for low rank spatiotemporal neural receptive fields. 2688-2696 - Victor Gabillon, Branislav Kveton, Zheng Wen, Brian Eriksson, S. Muthukrishnan:

Adaptive Submodular Maximization in Bandit Setting. 2697-2705 - Hossein Azari Soufiani, William Z. Chen, David C. Parkes, Lirong Xia:

Generalized Method-of-Moments for Rank Aggregation. 2706-2714 - Matthew J. Johnson, James Saunderson, Alan S. Willsky:

Analyzing Hogwild Parallel Gaussian Gibbs Sampling. 2715-2723 - H. Brendan McMahan, Jacob D. Abernethy:

Minimax Optimal Algorithms for Unconstrained Linear Optimization. 2724-2732 - Abhradeep Guha Thakurta, Adam D. Smith:

(Nearly) Optimal Algorithms for Private Online Learning in Full-information and Bandit Settings. 2733-2741 - Rishabh K. Iyer, Stefanie Jegelka, Jeff A. Bilmes:

Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions. 2742-2750 - Yifei Ma, Roman Garnett, Jeff G. Schneider:

Σ-Optimality for Active Learning on Gaussian Random Fields. 2751-2759 - Corinna Cortes, Marius Kloft, Mehryar Mohri:

Learning Kernels Using Local Rademacher Complexity. 2760-2768 - Roger B. Grosse, Chris J. Maddison, Ruslan Salakhutdinov:

Annealing between distributions by averaging moments. 2769-2777 - Robert V. Lindsey, Michael Mozer, William J. Huggins, Harold Pashler:

Optimizing Instructional Policies. 2778-2786 - Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, Oksana Yakhnenko:

Translating Embeddings for Modeling Multi-relational Data. 2787-2795 - Praneeth Netrapalli, Prateek Jain, Sujay Sanghavi:

Phase Retrieval using Alternating Minimization. 2796-2804 - David E. Carlson, Vinayak A. Rao, Joshua T. Vogelstein, Lawrence Carin:

Real-Time Inference for a Gamma Process Model of Neural Spiking. 2805-2813 - Pierre Baldi, Peter J. Sadowski:

Understanding Dropout. 2814-2822 - Behnam Neyshabur, Nati Srebro, Ruslan Salakhutdinov, Yury Makarychev, Payman Yadollahpour:

The Power of Asymmetry in Binary Hashing. 2823-2831 - John C. Duchi, Michael I. Jordan, H. Brendan McMahan:

Estimation, Optimization, and Parallelism when Data is Sparse. 2832-2840 - Josh Merel, Roy Fox, Tony Jebara, Liam Paninski:

A multi-agent control framework for co-adaptation in brain-computer interfaces. 2841-2849 - Prem Gopalan, Chong Wang, David M. Blei:

Modeling Overlapping Communities with Node Popularities. 2850-2858 - Beomjoon Kim, Amir-massoud Farahmand, Joelle Pineau, Doina Precup:

Learning from Limited Demonstrations. 2859-2867 - Guy Van den Broeck, Adnan Darwiche:

On the Complexity and Approximation of Binary Evidence in Lifted Inference. 2868-2876 - James Martens, Arkadev Chattopadhyay, Toniann Pitassi, Richard S. Zemel:

On the Expressive Power of Restricted Boltzmann Machines. 2877-2885 - Ioannis Mitliagkas, Constantine Caramanis, Prateek Jain:

Memory Limited, Streaming PCA. 2886-2894 - Srikrishna Sridhar, Stephen J. Wright, Christopher Ré, Ji Liu, Victor Bittorf, Ce Zhang:

An Approximate, Efficient LP Solver for LP Rounding. 2895-2903 - Özgür Simsek:

Linear decision rule as aspiration for simple decision heuristics. 2904-2912 - Harikrishna Narasimhan, Shivani Agarwal:

On the Relationship Between Binary Classification, Bipartite Ranking, and Binary Class Probability Estimation. 2913-2921 - Arash A. Amini, XuanLong Nguyen:

Bayesian inference as iterated random functions with applications to sequential inference in graphical models. 2922-2930 - Hristo S. Paskov, Robert West, John C. Mitchell, Trevor J. Hastie:

Compressive Feature Learning. 2931-2939 - Matus Telgarsky, Sanjoy Dasgupta:

Moment-based Uniform Deviation Bounds for k-means and Friends. 2940-2948 - Mohammad Amin Sadeghi, David A. Forsyth:

Fast Template Evaluation with Vector Quantization. 2949-2957 - Sheeraz Ahmad, He Huang, Angela J. Yu:

Context-sensitive active sensing in humans. 2958-2966 - Bernardino Romera-Paredes, Massimiliano Pontil:

A New Convex Relaxation for Tensor Completion. 2967-2975 - Qiang Cheng, Qiang Liu, Feng Chen, Alexander Ihler:

Variational Planning for Graph-based MDPs. 2976-2984 - Özlem Aslan, Hao Cheng, Xinhua Zhang, Dale Schuurmans:

Convex Two-Layer Modeling. 2985-2993 - Haim Avron, Vikas Sindhwani, David P. Woodruff:

Sketching Structured Matrices for Faster Nonlinear Regression. 2994-3002 - Ian Osband, Daniel Russo, Benjamin Van Roy:

(More) Efficient Reinforcement Learning via Posterior Sampling. 3003-3011 - Adel Javanmard, Andrea Montanari:

Model Selection for High-Dimensional Regression under the Generalized Irrepresentability Condition. 3012-3020 - Zheng Wen, Benjamin Van Roy:

Efficient Exploration and Value Function Generalization in Deterministic Systems. 3021-3029 - Mahdi Milani Fard, Yuri Grinberg, Amir-massoud Farahmand, Joelle Pineau, Doina Precup:

Bellman Error Based Feature Generation using Random Projections on Sparse Spaces. 3030-3038 - Nathaniel J. Smith, Noah D. Goodman, Michael C. Frank:

Learning and using language via recursive pragmatic reasoning about other agents. 3039-3047 - Andreas Stuhlmüller, Jessica Taylor, Noah D. Goodman:

Learning Stochastic Inverses. 3048-3056 - Qianli Liao, Joel Z. Leibo, Tomaso A. Poggio:

Learning invariant representations and applications to face verification. 3057-3065 - Alexander Rakhlin, Karthik Sridharan:

Optimization, Learning, and Games with Predictable Sequences. 3066-3074 - Samory Kpotufe, Vikas K. Garg:

Adaptivity to Local Smoothness and Dimension in Kernel Regression. 3075-3083 - Lei Jimmy Ba, Brendan J. Frey:

Adaptive dropout for training deep neural networks. 3084-3092 - Daniel Yamins, Ha Hong, Charles F. Cadieu, James J. DiCarlo:

Hierarchical Modular Optimization of Convolutional Networks Achieves Representations Similar to Macaque IT and Human Ventral Stream. 3093-3101 - Sam Patterson, Yee Whye Teh:

Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex. 3102-3110 - Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, Jeffrey Dean:

Distributed Representations of Words and Phrases and their Compositionality. 3111-3119 - Tai Qin, Karl Rohe:

Regularized Spectral Clustering under the Degree-Corrected Stochastic Blockmodel. 3120-3128 - Xiao-Ming Wu, Zhenguo Li, Shih-Fu Chang:

Analyzing the Harmonic Structure in Graph-Based Learning. 3129-3137 - Marius Pachitariu, Biljana Petreska, Maneesh Sahani:

Recurrent linear models of simultaneously-recorded neural populations. 3138-3146 - Nan Du, Le Song, Manuel Gomez-Rodriguez, Hongyuan Zha:

Scalable Influence Estimation in Continuous-Time Diffusion Networks. 3147-3155 - Roger Frigola, Fredrik Lindsten, Thomas B. Schön, Carl E. Rasmussen:

Bayesian Inference and Learning in Gaussian Process State-Space Models with Particle MCMC. 3156-3164 - Cho-Jui Hsieh, Mátyás A. Sustik, Inderjit S. Dhillon, Pradeep Ravikumar, Russell A. Poldrack:

BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables. 3165-3173 - Akshay Balsubramani, Sanjoy Dasgupta, Yoav Freund:

The Fast Convergence of Incremental PCA. 3174-3182 - Aurel A. Lazar, Yevgeniy B. Slutskiy:

Multisensory Encoding, Decoding, and Identification. 3183-3191 - Krzysztof Choromanski, Tony Jebara, Kui Tang:

Adaptive Anonymity via b-Matching. 3192-3200 - Matjaz Jogan, Alan A. Stocker:

Optimal integration of visual speed across different spatiotemporal frequency channels. 3201-3209 - Martin Slawski, Matthias Hein, Pavlo Lutsik:

Matrix factorization with binary components. 3210-3218 - Nicolas Heess, Daniel Tarlow, John M. Winn:

Learning to Pass Expectation Propagation Messages. 3219-3227 - Le Song, Bo Dai:

Robust Low Rank Kernel Embeddings of Multivariate Distributions. 3228-3236

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














