


default search action
NIPS 2014: Montreal, Quebec, Canada
- Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, Kilian Q. Weinberger:

Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada. 2014 - Krikamol Muandet, Bharath K. Sriperumbudur, Bernhard Schölkopf:

Kernel Mean Estimation via Spectral Filtering. 1-9 - Yichuan Zhang, Charles Sutton:

Semi-Separable Hamiltonian Monte Carlo for Inference in Bayesian Hierarchical Models. 10-18 - Mu Li, David G. Andersen, Alexander J. Smola, Kai Yu:

Communication Efficient Distributed Machine Learning with the Parameter Server. 19-27 - Halid Ziya Yerebakan, Bartek Rajwa, Murat Dundar:

The Infinite Mixture of Infinite Gaussian Mixtures. 28-36 - Anqi Liu, Brian D. Ziebart:

Robust Classification Under Sample Selection Bias. 37-45 - Yuanjun Xiong, Wei Liu, Deli Zhao, Xiaoou Tang:

Zeta Hull Pursuits: Learning Nonconvex Data Hulls. 46-54 - Katerina Fragkiadaki, Marta Salas, Pablo Andrés Arbeláez, Jitendra Malik:

Grouping-Based Low-Rank Trajectory Completion and 3D Reconstruction. 55-63 - Ferran Diego Andilla, Fred A. Hamprecht:

Sparse Space-Time Deconvolution for Calcium Image Analysis. 64-72 - Takayuki Osogami, Makoto Otsuka:

Restricted Boltzmann machines modeling human choice. 73-81 - Pedro F. Felzenszwalb, John G. Oberlin:

Multiscale Fields of Patterns. 82-90 - Yichao Lu, Dean P. Foster:

large scale canonical correlation analysis with iterative least squares. 91-99 - Stefan Wager, William Fithian, Sida Wang, Percy Liang:

Altitude Training: Strong Bounds for Single-Layer Dropout. 100-108 - M. Pawan Kumar:

Rounding-based Moves for Metric Labeling. 109-117 - Xinghao Pan, Stefanie Jegelka, Joseph E. Gonzalez, Joseph K. Bradley, Michael I. Jordan:

Parallel Double Greedy Submodular Maximization. 118-126 - Han Liu, Lie Wang, Tuo Zhao:

Multivariate Regression with Calibration. 127-135 - Jason D. Lee, Jonathan E. Taylor:

Exact Post Model Selection Inference for Marginal Screening. 136-144 - Yingzhen Yang, Feng Liang, Shuicheng Yan, Zhangyang Wang, Thomas S. Huang:

On a Theory of Nonparametric Pairwise Similarity for Clustering: Connecting Clustering to Classification. 145-153 - S. M. Ali Eslami, Daniel Tarlow, Pushmeet Kohli, John M. Winn:

Just-In-Time Learning for Fast and Flexible Inference. 154-162 - Ohad Shamir:

Fundamental Limits of Online and Distributed Algorithms for Statistical Learning and Estimation. 163-171 - Danfeng Qin, Xuanli Chen, Matthieu Guillaumin, Luc Van Gool:

Quantized Kernel Learning for Feature Matching. 172-180 - Huahua Wang, Arindam Banerjee, Zhi-Quan Luo:

Parallel Direction Method of Multipliers. 181-189 - Giorgio Patrini, Richard Nock, Tibério S. Caetano, Paul Rivera:

(Almost) No Label No Cry. 190-198 - Yonatan Gur, Assaf Zeevi, Omar Besbes:

Stochastic Multi-Armed-Bandit Problem with Non-stationary Rewards. 199-207 - Jan Feyereisl, Suha Kwak, Jeany Son, Bohyung Han:

Object Localization based on Structural SVM using Privileged Information. 208-216 - Zhenyao Zhu, Ping Luo, Xiaogang Wang, Xiaoou Tang:

Multi-View Perceptron: a Deep Model for Learning Face Identity and View Representations. 217-225 - Daniel Zoran, Dilip Krishnan, José Bento, Bill Freeman:

Shape and Illumination from Shading using the Generic Viewpoint Assumption. 226-234 - Jason Chang, John W. Fisher III:

Parallel Sampling of HDPs using Sub-Cluster Splits. 235-243 - Josip Djolonga, Andreas Krause:

From MAP to Marginals: Variational Inference in Bayesian Submodular Models. 244-252 - Jiashi Feng, Huan Xu, Shie Mannor, Shuicheng Yan:

Robust Logistic Regression and Classification. 253-261 - Tianbao Yang, Rong Jin:

Extracting Certainty from Uncertainty: Transductive Pairwise Classification from Pairwise Similarities. 262-270 - Sung Ju Hwang, Leonid Sigal:

A Unified Semantic Embedding: Relating Taxonomies and Attributes. 271-279 - Elias Bareinboim, Judea Pearl:

Transportability from Multiple Environments with Limited Experiments: Completeness Results. 280-288 - Siamak Ravanbakhsh, Reihaneh Rabbany, Russell Greiner:

Augmentative Message Passing for Traveling Salesman Problem and Graph Partitioning. 289-297 - Ricardo Silva, Robin J. Evans:

Causal Inference through a Witness Protection Program. 298-306 - Margareta Ackerman, Sanjoy Dasgupta:

Incremental Clustering: The Case for Extra Clusters. 307-315 - Firdaus Janoos, Huseyin Denli, Niranjan A. Subrahmanya:

Multi-scale Graphical Models for Spatio-Temporal Processes. 316-324 - Tapani Raiko, Li Yao, KyungHyun Cho, Yoshua Bengio:

Iterative Neural Autoregressive Distribution Estimator NADE-k. 325-333 - Yash Deshpande, Andrea Montanari:

Sparse PCA via Covariance Thresholding. 334-342 - Evan W. Archer, Urs Köster, Jonathan W. Pillow, Jakob H. Macke:

Low-dimensional models of neural population activity in sensory cortical circuits. 343-351 - Yuanyuan Mi, Luozheng Li, Dahui Wang, Si Wu:

A Synaptical Story of Persistent Activity with Graded Lifetime in a Neural System. 352-360 - Harsh H. Pareek, Pradeep Ravikumar:

A Representation Theory for Ranking Functions. 361-369 - Lee-Ad Gottlieb, Aryeh Kontorovich, Pinhas Nisnevitch:

Near-optimal sample compression for nearest neighbors. 370-378 - Shouyuan Chen, Tian Lin, Irwin King, Michael R. Lyu, Wei Chen:

Combinatorial Pure Exploration of Multi-Armed Bandits. 379-387 - Minh Ha Quang, Marco San-Biagio, Vittorio Murino:

Log-Hilbert-Schmidt metric between positive definite operators on Hilbert spaces. 388-396 - Debarghya Ghoshdastidar, Ambedkar Dukkipati:

Consistency of Spectral Partitioning of Uniform Hypergraphs under Planted Partition Model. 397-405 - Alaa Saade, Florent Krzakala

, Lenka Zdeborová:
Spectral Clustering of graphs with the Bethe Hessian. 406-414 - Brian McWilliams, Gabriel Krummenacher, Mario Lucic, Joachim M. Buhmann:

Fast and Robust Least Squares Estimation in Corrupted Linear Models. 415-423 - Woonhyun Nam, Piotr Dollár, Joon Hee Han:

Local Decorrelation For Improved Pedestrian Detection. 424-432 - Robert A. Vandermeulen, Clayton D. Scott:

Robust Kernel Density Estimation by Scaling and Projection in Hilbert Space. 433-441 - Chicheng Zhang, Kamalika Chaudhuri:

Beyond Disagreement-Based Agnostic Active Learning. 442-450 - Arthur Guez, Nicolas Heess, David Silver, Peter Dayan:

Bayes-Adaptive Simulation-based Search with Value Function Approximation. 451-459 - Sahar Akram, Jonathan Z. Simon, Shihab A. Shamma, Behtash Babadi:

A State-Space Model for Decoding Auditory Attentional Modulation from MEG in a Competing-Speaker Environment. 460-468 - Sivan Sabato, Rémi Munos:

Active Regression by Stratification. 469-477 - Joseph G. Makin, Philip N. Sabes:

Sensory Integration and Density Estimation. 478-486 - Bolei Zhou, Àgata Lapedriza, Jianxiong Xiao, Antonio Torralba, Aude Oliva:

Learning Deep Features for Scene Recognition using Places Database. 487-495 - Ryan D. Turner, Steven Bottone, Bhargav Avasarala:

A Complete Variational Tracker. 496-504 - Yuanyuan Mi, C. C. Alan Fung, K. Y. Michael Wong, Si Wu:

Spike Frequency Adaptation Implements Anticipative Tracking in Continuous Attractor Neural Networks. 505-513 - Hemant Tyagi, Bernd Gärtner, Andreas Krause:

Efficient Sampling for Learning Sparse Additive Models in High Dimensions. 514-522 - Xiaolong Wang, Liliang Zhang, Liang Lin, Zhujin Liang, Wangmeng Zuo:

Deep Joint Task Learning for Generic Object Extraction. 523-531 - Changyou Chen, Jun Zhu, Xinhua Zhang:

Robust Bayesian Max-Margin Clustering. 532-540 - Deepti Pachauri, Risi Kondor, Gautam Sargur, Vikas Singh:

Permutation Diffusion Maps (PDM) with Application to the Image Association Problem in Computer Vision. 541-549 - Tor Lattimore, Rémi Munos:

Bounded Regret for Finite-Armed Structured Bandits. 550-558 - Guy Rosman, Mikhail Volkov, Dan Feldman, John W. Fisher III, Daniela Rus:

Coresets for k-Segmentation of Streaming Data. 559-567 - Karen Simonyan, Andrew Zisserman:

Two-Stream Convolutional Networks for Action Recognition in Videos. 568-576 - Greg Ver Steeg, Aram Galstyan:

Discovering Structure in High-Dimensional Data Through Correlation Explanation. 577-585 - Christof Seiler, Simon Rubinstein-Salzedo, Susan P. Holmes:

Positive Curvature and Hamiltonian Monte Carlo. 586-594 - Sewoong Oh, Devavrat Shah:

Learning Mixed Multinomial Logit Model from Ordinal Data. 595-603 - Ian Osband, Benjamin Van Roy:

Near-optimal Reinforcement Learning in Factored MDPs. 604-612 - Tomás Kocák, Gergely Neu, Michal Valko, Rémi Munos:

Efficient learning by implicit exploration in bandit problems with side observations. 613-621 - Kareem Amin, Afshin Rostamizadeh, Umar Syed:

Repeated Contextual Auctions with Strategic Buyers. 622-630 - Christopher Meek, Marina Meila:

Recursive Inversion Models for Permutations. 631-639 - Robert Nishihara, Stefanie Jegelka, Michael I. Jordan:

On the Convergence Rate of Decomposable Submodular Function Minimization. 640-648 - Happy Mittal, Prasoon Goyal, Vibhav Gogate

, Parag Singla:
New Rules for Domain Independent Lifted MAP Inference. 649-657 - James Ridgway, Pierre Alquier, Nicolas Chopin, Feng Liang:

PAC-Bayesian AUC classification and scoring. 658-666 - Sang-Yun Oh, Onkar Dalal, Kshitij Khare, Bala Rajaratnam:

Optimization Methods for Sparse Pseudo-Likelihood Graphical Model Selection. 667-675 - Oluwasanmi Koyejo, Rajiv Khanna, Joydeep Ghosh, Russell A. Poldrack:

On Prior Distributions and Approximate Inference for Structured Variables. 676-684 - Prateek Jain, Ambuj Tewari, Purushottam Kar:

On Iterative Hard Thresholding Methods for High-dimensional M-Estimation. 685-693 - Purushottam Kar, Harikrishna Narasimhan, Prateek Jain:

Online and Stochastic Gradient Methods for Non-decomposable Loss Functions. 694-702 - Marthinus Christoffel du Plessis, Gang Niu, Masashi Sugiyama:

Analysis of Learning from Positive and Unlabeled Data. 703-711 - Devansh Arpit, Ifeoma Nwogu, Venu Govindaraju:

Dimensionality Reduction with Subspace Structure Preservation. 712-720 - Quoc Tran-Dinh, Volkan Cevher:

Constrained convex minimization via model-based excessive gap. 721-729 - Florian Stimberg, Andreas Ruttor, Manfred Opper:

Poisson Process Jumping between an Unknown Number of Rates: Application to Neural Spike Data. 730-738 - Michael Schober, David Duvenaud, Philipp Hennig:

Probabilistic ODE Solvers with Runge-Kutta Means. 739-747 - Jan Drugowitsch, Rubén Moreno-Bote, Alexandre Pouget:

Optimal decision-making with time-varying evidence reliability. 748-756 - Dongqu Chen:

Learning Shuffle Ideals Under Restricted Distributions. 757-765 - Alexey Dosovitskiy, Jost Tobias Springenberg, Martin A. Riedmiller, Thomas Brox:

Discriminative Unsupervised Feature Learning with Convolutional Neural Networks. 766-774 - David Adametz, Volker Roth:

Distance-Based Network Recovery under Feature Correlation. 775-783 - Elad Hazan, Kfir Y. Levy:

Bandit Convex Optimization: Towards Tight Bounds. 784-792 - Shuhang Gu, Lei Zhang, Wangmeng Zuo, Xiangchu Feng:

Projective dictionary pair learning for pattern classification. 793-801 - Deeparnab Chakrabarty, Prateek Jain, Pravesh Kothari:

Provable Submodular Minimization using Wolfe's Algorithm. 802-809 - Amir Sani, Gergely Neu, Alessandro Lazaric:

Exploiting easy data in online optimization. 810-818 - Daniele Calandriello, Alessandro Lazaric, Marcello Restelli:

Sparse Multi-Task Reinforcement Learning. 819-827 - Marta Soare, Alessandro Lazaric, Rémi Munos:

Best-Arm Identification in Linear Bandits. 828-836 - Daniel Hernández-Lobato, Viktoriia Sharmanska, Kristian Kersting, Christoph H. Lampert, Novi Quadrianto:

Mind the Nuisance: Gaussian Process Classification using Privileged Noise. 837-845 - Rémi Lemonnier, Kevin Scaman, Nicolas Vayatis:

Tight Bounds for Influence in Diffusion Networks and Application to Bond Percolation and Epidemiology. 846-854 - Roi Livni, Shai Shalev-Shwartz, Ohad Shamir:

On the Computational Efficiency of Training Neural Networks. 855-863 - Xavier Boix, Gemma Roig, Salomon Diether, Luc Van Gool:

Self-Adaptable Templates for Feature Coding. 864-872 - Mario Marchand, Hongyu Su, Emilie Morvant, Juho Rousu, John Shawe-Taylor:

Multilabel Structured Output Learning with Random Spanning Trees of Max-Margin Markov Networks. 873-881 - XiaoJian Wu, Daniel Sheldon, Shlomo Zilberstein:

Stochastic Network Design in Bidirected Trees. 882-890 - George O. Mohler:

Learning convolution filters for inverse covariance estimation of neural network connectivity. 891-899 - Fajwel Fogel, Alexandre d'Aspremont, Milan Vojnovic:

SerialRank: Spectral Ranking using Seriation. 900-908 - Adrian Weller, Tony Jebara:

Clamping Variables and Approximate Inference. 909-917 - José Miguel Hernández-Lobato, Matthew W. Hoffman, Zoubin Ghahramani:

Predictive Entropy Search for Efficient Global Optimization of Black-box Functions. 918-926 - Eran Treister, Javier Turek:

A Block-Coordinate Descent Approach for Large-scale Sparse Inverse Covariance Estimation. 927-935 - Shenlong Wang, Alexander G. Schwing, Raquel Urtasun:

Efficient Inference of Continuous Markov Random Fields with Polynomial Potentials. 936-944 - Austin R. Benson, Jason D. Lee, Bartek Rajwa, David F. Gleich:

Scalable Methods for Nonnegative Matrix Factorizations of Near-separable Tall-and-skinny Matrices. 945-953 - Kenneth W. Latimer, E. J. Chichilnisky, Fred Rieke, Jonathan W. Pillow:

Inferring synaptic conductances from spike trains with a biophysically inspired point process model. 954-962 - Daniel Soudry, Itay Hubara, Ron Meir:

Expectation Backpropagation: Parameter-Free Training of Multilayer Neural Networks with Continuous or Discrete Weights. 963-971 - Franziska Meier, Philipp Hennig, Stefan Schaal:

Incremental Local Gaussian Regression. 972-980 - Isabel Valera

, Zoubin Ghahramani:
General Table Completion using a Bayesian Nonparametric Model. 981-989 - Hengshuai Yao, Csaba Szepesvári, Richard S. Sutton, Joseph Modayil, Shalabh Bhatnagar:

Universal Option Models. 990-998 - Assaf Glazer, Omer Weissbrod, Michael Lindenbaum, Shaul Markovitch:

Approximating Hierarchical MV-sets for Hierarchical Clustering. 999-1007 - Ian En-Hsu Yen, Cho-Jui Hsieh, Pradeep Ravikumar, Inderjit S. Dhillon:

Constant Nullspace Strong Convexity and Fast Convergence of Proximal Methods under High-Dimensional Settings. 1008-1016 - Deanna Needell, Rachel A. Ward, Nathan Srebro:

Stochastic Gradient Descent, Weighted Sampling, and the Randomized Kaczmarz algorithm. 1017-1025 - Luigi Acerbi, Wei Ji Ma, Sethu Vijayakumar:

A Framework for Testing Identifiability of Bayesian Models of Perception. 1026-1034 - Balázs Szörényi, Gunnar Kedenburg, Rémi Munos:

Optimistic Planning in Markov Decision Processes Using a Generative Model. 1035-1043 - Yue Wu, José Miguel Hernández-Lobato, Zoubin Ghahramani:

Gaussian Process Volatility Model. 1044-1052 - Jie Wang, Jiayu Zhou, Jun Liu, Peter Wonka, Jieping Ye:

A Safe Screening Rule for Sparse Logistic Regression. 1053-1061 - Guy Bresler, David Gamarnik, Devavrat Shah:

Hardness of parameter estimation in graphical models. 1062-1070 - Sergey Levine, Pieter Abbeel:

Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics. 1071-1079 - Nisheeth Srivastava, Ed Vul, Paul R. Schrater:

Magnitude-sensitive preference formation. 1080-1088 - Alexandra Carpentier, Michal Valko:

Extreme bandits. 1089-1097 - Qiang Liu, Alexander Ihler:

Distributed Estimation, Information Loss and Exponential Families. 1098-1106 - Praneeth Netrapalli, U. N. Niranjan, Sujay Sanghavi, Animashree Anandkumar, Prateek Jain:

Non-convex Robust PCA. 1107-1115 - Francesco Orabona:

Simultaneous Model Selection and Optimization through Parameter-free Stochastic Learning. 1116-1124 - Jun Zhu, Junhua Mao, Alan L. Yuille:

Learning From Weakly Supervised Data by The Expectation Loss SVM (e-SVM) algorithm. 1125-1133 - Jian Zhang, Alexander G. Schwing, Raquel Urtasun:

Message Passing Inference for Large Scale Graphical Models with High Order Potentials. 1134-1142 - Lingqiao Liu

, Chunhua Shen, Lei Wang, Anton van den Hengel, Chao Wang:
Encoding High Dimensional Local Features by Sparse Coding Based Fisher Vectors. 1143-1151 - Kumar Avinava Dubey, Qirong Ho, Sinead A. Williamson, Eric P. Xing:

Dependent nonparametric trees for dynamic hierarchical clustering. 1152-1160 - Mohammad Tanvir Irfan

, Luis E. Ortiz:
Causal Strategic Inference in Networked Microfinance Economies. 1161-1169 - Haim Cohen, Koby Crammer:

Learning Multiple Tasks in Parallel with a Shared Annotator. 1170-1178 - Maximilian Nickel, Xueyan Jiang, Volker Tresp:

Reducing the Rank in Relational Factorization Models by Including Observable Patterns. 1179-1187 - Shiau Hong Lim, Yudong Chen, Huan Xu:

Clustering from Labels and Time-Varying Graphs. 1188-1196 - Nishant A. Mehta, Robert C. Williamson:

From Stochastic Mixability to Fast Rates. 1197-1205 - Guangcan Liu, Ping Li:

Recovery of Coherent Data via Low-Rank Dictionary Pursuit. 1206-1214 - Karin C. Knudson, Jacob L. Yates, Alexander Huk, Jonathan W. Pillow:

Inferring sparse representations of continuous signals with continuous orthogonal matching pursuit. 1215-1223 - Shinichi Nakajima, Issei Sato, Masashi Sugiyama, Kazuho Watanabe, Hiroko Kobayashi:

Analysis of Variational Bayesian Latent Dirichlet Allocation: Weaker Sparsity Than MAP. 1224-1232 - Cem Tekin, Mihaela van der Schaar:

Discovering, Learning and Exploiting Relevance. 1233-1241 - Tianyi Zhou, Jeff A. Bilmes, Carlos Guestrin:

Divide-and-Conquer Learning by Anchoring a Conical Hull. 1242-1250 - Daniel M. Steinberg, Edwin V. Bonilla:

Extended and Unscented Gaussian Processes. 1251-1259 - Yuchen Zhang, Xi Chen, Dengyong Zhou, Michael I. Jordan:

Spectral Methods meet EM: A Provably Optimal Algorithm for Crowdsourcing. 1260-1268 - Emily L. Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, Rob Fergus:

Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation. 1269-1277 - Wojciech Zaremba, Karol Kurach, Rob Fergus:

Learning to Discover Efficient Mathematical Identities. 1278-1286 - Kamalika Chaudhuri, Daniel J. Hsu, Shuang Song:

The Large Margin Mechanism for Differentially Private Maximization. 1287-1295 - Joon Hee Choi, S. Vishwanathan:

DFacTo: Distributed Factorization of Tensors. 1296-1304 - Mehmet Gönen, Adam A. Margolin:

Localized Data Fusion for Kernel k-Means Clustering with Application to Cancer Biology. 1305-1313 - Mehryar Mohri, Scott Yang:

Conditional Swap Regret and Conditional Correlated Equilibrium. 1314-1322 - Chao Chen, Han Liu, Dimitris N. Metaxas, Tianqi Zhao:

Mode Estimation for High Dimensional Discrete Tree Graphical Models. 1323-1331 - Weizhu Chen, Zhenghao Wang, Jingren Zhou:

Large-scale L-BFGS using MapReduce. 1332-1340 - Jingjing Zheng, Zhuolin Jiang, Rama Chellappa, P. Jonathon Phillips:

Submodular Attribute Selection for Action Recognition in Video. 1341-1349 - Adams Wei Yu, Wanli Ma, Yaoliang Yu, Jaime G. Carbonell, Suvrit Sra:

Efficient Structured Matrix Rank Minimization. 1350-1358 - Lionel Ott, Linsey Xiaolin Pang, Fabio Tozeto Ramos, Sanjay Chawla:

On Integrated Clustering and Outlier Detection. 1359-1367 - Haipeng Luo, Robert E. Schapire:

A Drifting-Games Analysis for Online Learning and Applications to Boosting. 1368-1376 - Xianghang Liu, Justin Domke:

Projecting Markov Random Field Parameters for Fast Mixing. 1377-1385 - Robert V. Lindsey, Mohammad Khajah, Michael C. Mozer:

Automatic Discovery of Cognitive Skills to Improve the Prediction of Student Learning. 1386-1394 - Ananda Theertha Suresh, Alon Orlitsky, Jayadev Acharya, Ashkan Jafarpour:

Near-Optimal-Sample Estimators for Spherical Gaussian Mixtures. 1395-1403 - Trung V. Nguyen, Edwin V. Bonilla:

Automated Variational Inference for Gaussian Process Models. 1404-1412 - Sebastian Tschiatschek, Rishabh K. Iyer, Haochen Wei, Jeff A. Bilmes:

Learning Mixtures of Submodular Functions for Image Collection Summarization. 1413-1421 - Quanquan Gu, Huan Gui, Jiawei Han:

Robust Tensor Decomposition with Gross Corruption. 1422-1430 - Prateek Jain, Sewoong Oh:

Provable Tensor Factorization with Missing Data. 1431-1439 - Meisam Razaviyayn, Mingyi Hong, Zhi-Quan Luo, Jong-Shi Pang:

Parallel Successive Convex Approximation for Nonsmooth Nonconvex Optimization. 1440-1448 - Sebastian Stober, Daniel J. Cameron, Jessica A. Grahn:

Using Convolutional Neural Networks to Recognize Rhythm Stimuli from Electroencephalography Recordings. 1449-1457 - Zhe Liu, John D. Lafferty:

Blossom Tree Graphical Models. 1458-1465 - Ian Osband, Benjamin Van Roy:

Model-based Reinforcement Learning and the Eluder Dimension. 1466-1474 - Bruce E. Hajek, Sewoong Oh, Jiaming Xu:

Minimax-optimal Inference from Partial Rankings. 1475-1483 - Hsiao-Yu Fish Tung, Alexander J. Smola:

Spectral Methods for Indian Buffet Process Inference. 1484-1492 - Harikrishna Narasimhan, Rohit Vaish, Shivani Agarwal:

On the Statistical Consistency of Plug-in Classifiers for Non-decomposable Performance Measures. 1493-1501 - Nan Li, Rong Jin, Zhi-Hua Zhou:

Top Rank Optimization in Linear Time. 1502-1510 - Yining Wang, Jun Zhu:

Spectral Methods for Supervised Topic Models. 1511-1519 - Karthika Mohan, Judea Pearl:

Graphical Models for Recovering Probabilistic and Causal Queries from Missing Data. 1520-1528 - Quanquan Gu, Zhaoran Wang, Han Liu:

Sparse PCA with Oracle Property. 1529-1537 - Taylor Berg-Kirkpatrick, Jacob Andreas, Dan Klein:

Unsupervised Transcription of Piano Music. 1538-1546 - Mohammad E. Khan:

Decoupled Variational Gaussian Inference. 1547-1555 - Arindam Banerjee, Sheng Chen, Farideh Fazayeli, Vidyashankar Sivakumar:

Estimation with Norm Regularization. 1556-1564 - Khaled S. Refaat, Arthur Choi, Adnan Darwiche:

Decomposing Parameter Estimation Problems. 1565-1573 - Atsushi Nitanda:

Stochastic Proximal Gradient Descent with Acceleration Techniques. 1574-1582 - Daniel Russo, Benjamin Van Roy:

Learning to Optimize via Information-Directed Sampling. 1583-1591 - Daniel Bartz, Klaus-Robert Müller:

Covariance shrinkage for autocorrelated data. 1592-1600 - Jonathan Long, Ning Zhang, Trevor Darrell:

Do Convnets Learn Correspondence? 1601-1609 - Ofer Dekel, Elad Hazan, Tomer Koren:

The Blinded Bandit: Learning with Adaptive Feedback. 1610-1618 - Changbo Zhu, Huan Xu, Chenlei Leng, Shuicheng Yan:

Convex Optimization Procedure for Clustering: Theoretical Revisit. 1619-1627 - Anqi Wu, Mijung Park, Oluwasanmi Koyejo, Jonathan W. Pillow:

Sparse Bayesian structure learning with dependent relevance determination priors. 1628-1636 - Hyun Oh Song, Yong Jae Lee, Stefanie Jegelka, Trevor Darrell:

Weakly-supervised Discovery of Visual Pattern Configurations. 1637-1645 - Aaron Defazio, Francis R. Bach, Simon Lacoste-Julien:

SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives. 1646-1654 - Deguang Kong, Ryohei Fujimaki, Ji Liu, Feiping Nie, Chris H. Q. Ding:

Exclusive Feature Learning on Arbitrary Structures via \ell_{1, 2}-norm. 1655-1663 - John J. Bruer, Joel A. Tropp, Volkan Cevher, Stephen Becker:

Time-Data Tradeoffs by Aggressive Smoothing. 1664-1672 - Cong Xie, Ling Yan, Wu-Jun Li, Zhihua Zhang:

Distributed Power-law Graph Computing: Theoretical and Empirical Analysis. 1673-1681 - Mateusz Malinowski, Mario Fritz:

A Multi-World Approach to Question Answering about Real-World Scenes based on Uncertain Input. 1682-1690 - Hastagiri P. Vanchinathan, Gábor Bartók, Andreas Krause:

Efficient Partial Monitoring with Prior Information. 1691-1699 - Yariv Dror Mizrahi, Misha Denil, Nando de Freitas:

Distributed Parameter Estimation in Probabilistic Graphical Models. 1700-1708 - Xu Chen, Xiuyuan Cheng, Stéphane Mallat:

Unsupervised Deep Haar Scattering on Graphs. 1709-1717 - Jie Shen, Huan Xu, Ping Li:

Online Optimization for Max-Norm Regularization. 1718-1726 - Jean Lafond, Olga Klopp, Eric Moulines, Joseph Salmon:

Probabilistic low-rank matrix completion on finite alphabets. 1727-1735 - Xianjie Chen, Alan L. Yuille:

Articulated Pose Estimation by a Graphical Model with Image Dependent Pairwise Relations. 1736-1744 - Michael Riis Andersen, Ole Winther, Lars Kai Hansen

:
Bayesian Inference for Structured Spike and Slab Priors. 1745-1753 - Ricardo Henao, Xin Yuan, Lawrence Carin:

Bayesian Nonlinear Support Vector Machines and Discriminative Factor Modeling. 1754-1762 - Yuanyuan Liu, Fanhua Shang, Wei Fan, James Cheng, Hong Cheng:

Generalized Higher-Order Orthogonal Iteration for Tensor Decomposition and Completion. 1763-1771 - Nicholas Ruozzi, Tony Jebara:

Making Pairwise Binary Graphical Models Attractive. 1772-1780 - David P. Woodruff:

Low Rank Approximation Lower Bounds in Row-Update Streams. 1781-1789 - Li Xu, Jimmy S. J. Ren, Ce Liu, Jiaya Jia:

Deep Convolutional Neural Network for Image Deconvolution. 1790-1798 - Jonathan Tompson, Arjun Jain, Yann LeCun, Christoph Bregler:

Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation. 1799-1807 - Yichuan Tang, Nitish Srivastava, Ruslan Salakhutdinov:

Learning Generative Models with Visual Attention. 1808-1816 - Rémi Lajugie, Damien Garreau, Francis R. Bach, Sylvain Arlot:

Metric Learning for Temporal Sequence Alignment. 1817-1825 - Avrim Blum, Nika Haghtalab, Ariel D. Procaccia:

Learning Optimal Commitment to Overcome Insecurity. 1826-1834 - Odalric-Ambrym Maillard, Timothy A. Mann, Shie Mannor:

How hard is my MDP?" The distribution-norm to the rescue". 1835-1843 - Siu On Chan, Ilias Diakonikolas, Rocco A. Servedio, Xiaorui Sun:

Near-Optimal Density Estimation in Near-Linear Time Using Variable-Width Histograms. 1844-1852 - A. P. Sarath Chandar, Stanislas Lauly, Hugo Larochelle, Mitesh M. Khapra, Balaraman Ravindran, Vikas C. Raykar, Amrita Saha:

An Autoencoder Approach to Learning Bilingual Word Representations. 1853-1861 - Christian A. Naesseth, Fredrik Lindsten, Thomas B. Schön:

Sequential Monte Carlo for Graphical Models. 1862-1870 - Mehryar Mohri, Andres Muñoz Medina:

Optimal Regret Minimization in Posted-Price Auctions with Strategic Buyers. 1871-1879 - Agnieszka Grabska-Barwinska, Jonathan W. Pillow:

Optimal prior-dependent neural population codes under shared input noise. 1880-1888 - Andrej Karpathy, Armand Joulin, Li Fei-Fei:

Deep Fragment Embeddings for Bidirectional Image Sentence Mapping. 1889-1897 - Xuezhi Wang, Jeff G. Schneider:

Flexible Transfer Learning under Support and Model Shift. 1898-1906 - Yunpeng Pan, Evangelos A. Theodorou:

Probabilistic Differential Dynamic Programming. 1907-1915 - Aron Yu, Kristen Grauman:

Predicting Useful Neighborhoods for Lazy Local Learning. 1916-1924 - Vincent Michalski, Roland Memisevic, Kishore Reddy Konda:

Modeling Deep Temporal Dependencies with Recurrent "Grammar Cells". 1925-1933 - Soumyadeep Chatterjee, Sheng Chen, Arindam Banerjee:

Generalized Dantzig Selector: Application to the k-support norm. 1934-1942 - Yanping Huang, Rajesh P. N. Rao:

Neurons as Monte Carlo Samplers: Bayesian Inference and Learning in Spiking Networks. 1943-1951 - Been Kim, Cynthia Rudin, Julie A. Shah:

The Bayesian Case Model: A Generative Approach for Case-Based Reasoning and Prototype Classification. 1952-1960 - Yuya Yoshikawa, Tomoharu Iwata, Hiroshi Sawada:

Latent Support Measure Machines for Bag-of-Words Data Classification. 1961-1969 - Jingwei Liang, Jalal Fadili, Gabriel Peyré:

Local Linear Convergence of Forward-Backward under Partial Smoothness. 1970-1978 - Marek Petrik, Dharmashankar Subramanian:

RAAM: The Benefits of Robustness in Approximating Aggregated MDPs in Reinforcement Learning. 1979-1987 - Yi Sun, Yuheng Chen, Xiaogang Wang, Xiaoou Tang:

Deep Learning Face Representation by Joint Identification-Verification. 1988-1996 - Trapit Bansal, Chiranjib Bhattacharyya, Ravindran Kannan:

A provable SVD-based algorithm for learning topics in dominant admixture corpus. 1997-2005 - Cho-Jui Hsieh, Inderjit S. Dhillon, Pradeep Ravikumar, Stephen Becker, Peder A. Olsen:

QUIC & DIRTY: A Quadratic Approximation Approach for Dirty Statistical Models. 2006-2014 - Matthias Zöhrer, Franz Pernkopf:

General Stochastic Networks for Classification. 2015-2023 - Cristina Savin, Sophie Denève:

Spatio-temporal Representations of Uncertainty in Spiking Neural Networks. 2024-2032 - Qian Wang, Jiaxing Zhang, Sen Song, Zheng Zhang:

Attentional Neural Network: Feature Selection Using Cognitive Feedback. 2033-2041 - Baotian Hu, Zhengdong Lu, Hang Li, Qingcai Chen:

Convolutional Neural Network Architectures for Matching Natural Language Sentences. 2042-2050 - Alekh Agarwal, Alina Beygelzimer, Daniel J. Hsu, John Langford, Matus Telgarsky:

Scalable Non-linear Learning with Adaptive Polynomial Expansions. 2051-2059 - David E. Carlson, Jana Schaich Borg, Kafui Dzirasa, Lawrence Carin:

On the relations of LFPs & Neural Spike Trains. 2060-2068 - Boqing Gong, Wei-Lun Chao, Kristen Grauman, Fei Sha:

Diverse Sequential Subset Selection for Supervised Video Summarization. 2069-2077 - Lu Jiang, Deyu Meng, Shoou-I Yu, Zhen-Zhong Lan, Shiguang Shan, Alexander G. Hauptmann:

Self-Paced Learning with Diversity. 2078-2086 - Bo Li, Yevgeniy Vorobeychik:

Feature Cross-Substitution in Adversarial Classification. 2087-2095 - Ozan Irsoy, Claire Cardie:

Deep Recursive Neural Networks for Compositionality in Language. 2096-2104 - Bruno Conejo, Nikos Komodakis, Sébastien Leprince, Jean-Philippe Avouac:

Inference by Learning: Speeding-up Graphical Model Optimization via a Coarse-to-Fine Cascade of Pruning Classifiers. 2105-2113 - Neil Houlsby, David M. Blei:

A Filtering Approach to Stochastic Variational Inference. 2114-2122 - Shameem Puthiya Parambath, Nicolas Usunier, Yves Grandvalet:

Optimizing F-Measures by Cost-Sensitive Classification. 2123-2131 - Jie Wang, Jieping Ye:

Two-Layer Feature Reduction for Sparse-Group Lasso via Decomposition of Convex Sets. 2132-2140 - Kihyuk Sohn, Wenling Shang, Honglak Lee:

Improved Multimodal Deep Learning with Variation of Information. 2141-2149 - Charles Kervrann:

PEWA: Patch-based Exponentially Weighted Aggregation for image denoising. 2150-2158 - Eunho Yang, Aurélie C. Lozano, Pradeep Ravikumar:

Elementary Estimators for Graphical Models. 2159-2167 - Cong Han Lim, Stephen J. Wright:

Beyond the Birkhoff Polytope: Convex Relaxations for Vector Permutation Problems. 2168-2176 - Omer Levy, Yoav Goldberg:

Neural Word Embedding as Implicit Matrix Factorization. 2177-2185 - Mohammad J. Saberian, Nuno Vasconcelos:

Multi-Resolution Cascades for Multiclass Object Detection. 2186-2194 - Xiangyu Wang, Peichao Peng, David B. Dunson:

Median Selection Subset Aggregation for Parallel Inference. 2195-2203 - Volodymyr Mnih, Nicolas Heess, Alex Graves, Koray Kavukcuoglu:

Recurrent Models of Visual Attention. 2204-2212 - Thang D. Bui, Richard E. Turner:

Tree-structured Gaussian Process Approximations. 2213-2221 - Maria-Florina Balcan, Christopher Berlind, Avrim Blum, Emma Cohen, Kaushik Patnaik, Le Song:

Active Learning and Best-Response Dynamics. 2222-2230 - Dylan Festa, Guillaume Hennequin, Máté Lengyel:

Analog Memories in a Balanced Rate-Based Network of E-I Neurons. 2231-2239 - Guillaume Hennequin, Laurence Aitchison, Máté Lengyel:

Fast Sampling-Based Inference in Balanced Neuronal Networks. 2240-2248 - Y. Cem Sübakan, Johannes Traa, Paris Smaragdis:

Spectral Learning of Mixture of Hidden Markov Models. 2249-2257 - Haim Avron, Huy L. Nguyen, David P. Woodruff:

Subspace Embeddings for the Polynomial Kernel. 2258-2266 - Tofigh Naghibi Mohamadpoor, Beat Pfister:

A Boosting Framework on Grounds of Online Learning. 2267-2275 - Sina Tootoonian, Máté Lengyel:

A Dual Algorithm for Olfactory Computation in the Locust Brain. 2276-2284 - Siqi Nie, Denis Deratani Mauá, Cassio P. de Campos, Qiang Ji:

Advances in Learning Bayesian Networks of Bounded Treewidth. 2285-2293 - Wouter M. Koolen, Tim van Erven, Peter Grünwald:

Learning the Learning Rate for Prediction with Expert Advice. 2294-2302 - Rashish Tandon, Karthikeyan Shanmugam

, Pradeep Ravikumar, Alexandros G. Dimakis:
On the Information Theoretic Limits of Learning Ising Models. 2303-2311 - Pritish Mohapatra, C. V. Jawahar, M. Pawan Kumar:

Efficient Optimization for Average Precision SVM. 2312-2320 - Anshumali Shrivastava, Ping Li:

Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS). 2321-2329 - Scott W. Linderman, Christopher H. Stock, Ryan P. Adams:

A framework for studying synaptic plasticity with neural spike train data. 2330-2338 - Huining Hu, Zhentao Li, Adrian R. Vetta:

Randomized Experimental Design for Causal Graph Discovery. 2339-2347 - Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov:

A Multiplicative Model for Learning Distributed Text-Based Attribute Representations. 2348-2356 - Kustaa Kangas, Mikko Koivisto, Teppo Mikael Niinimäki:

Learning Chordal Markov Networks by Dynamic Programming. 2357-2365 - David Eigen, Christian Puhrsch, Rob Fergus:

Depth Map Prediction from a Single Image using a Multi-Scale Deep Network. 2366-2374 - Kai Zhong, Ian En-Hsu Yen, Inderjit S. Dhillon, Pradeep Ravikumar:

Proximal Quasi-Newton for Computationally Intensive L1-regularized M-estimators. 2375-2383 - Bahadir Ozdemir, Larry S. Davis:

A Probabilistic Framework for Multimodal Retrieval using Integrative Indian Buffet Process. 2384-2392 - Peter J. Sadowski, Daniel Whiteson, Pierre Baldi:

Searching for Higgs Boson Decay Modes with Deep Learning. 2393-2401 - Xu Sun:

Structure Regularization for Structured Prediction. 2402-2410 - Xin Wang, Jinbo Bi, Shipeng Yu, Jiangwen Sun:

On Multiplicative Multitask Feature Learning. 2411-2419 - Kevin R. Moon, Alfred O. Hero III:

Multivariate f-divergence Estimation With Confidence. 2420-2428 - Zhen Cui, Hong Chang, Shiguang Shan, Xilin Chen:

Generalized Unsupervised Manifold Alignment. 2429-2437 - Stephan Mandt, David M. Blei:

Smoothed Gradients for Stochastic Variational Inference. 2438-2446 - Abhishek Sharma, Oncel Tuzel, Ming-Yu Liu:

Recursive Context Propagation Network for Semantic Scene Labeling. 2447-2455 - Ian En-Hsu Yen, Ting-Wei Lin, Shou-De Lin, Pradeep Ravikumar, Inderjit S. Dhillon:

Sparse Random Feature Algorithm as Coordinate Descent in Hilbert Space. 2456-2464 - Kaustubh R. Patil, Xiaojin Zhu, Lukasz Kopec, Bradley C. Love:

Optimal Teaching for Limited-Capacity Human Learners. 2465-2473 - Mehrdad Farajtabar, Nan Du, Manuel Gomez-Rodriguez, Isabel Valera

, Hongyuan Zha, Le Song:
Shaping Social Activity by Incentivizing Users. 2474-2482 - Kyle R. Ulrich, David E. Carlson, Wenzhao Lian, Jana Schaich Borg, Kafui Dzirasa, Lawrence Carin:

Analysis of Brain States from Multi-Region LFP Time-Series. 2483-2491 - Srikanth Jagabathula, Lakshminarayanan Subramanian, Ashwin Venkataraman:

Reputation-based Worker Filtering in Crowdsourcing. 2492-2500 - Vitaly Kuznetsov, Mehryar Mohri, Umar Syed:

Multi-Class Deep Boosting. 2501-2509 - Weijie Su, Stephen P. Boyd, Emmanuel J. Candès:

A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights. 2510-2518 - Bilal Piot, Matthieu Geist, Olivier Pietquin:

Difference of Convex Functions Programming for Reinforcement Learning. 2519-2527 - Kimberly L. Stachenfeld, Matthew M. Botvinick, Samuel Gershman:

Design Principles of the Hippocampal Cognitive Map. 2528-2536 - Robert Gens, Pedro M. Domingos:

Deep Symmetry Networks. 2537-2545 - William Vega-Brown, Marek Doniec, Nicholas Roy:

Nonparametric Bayesian inference on multivariate exponential families. 2546-2554 - Sanjoy Dasgupta, Samory Kpotufe:

Optimal rates for k-NN density and mode estimation. 2555-2563 - Matthew Lawlor, Steven W. Zucker:

Feedforward Learning of Mixture Models. 2564-2572 - Albert Xin Jiang, Leandro Soriano Marcolino, Ariel D. Procaccia, Tuomas Sandholm, Nisarg Shah, Milind Tambe:

Diverse Randomized Agents Vote to Win. 2573-2581 - Hyokun Yun, Parameswaran Raman, S. V. N. Vishwanathan:

Ranking via Robust Binary Classification. 2582-2590 - MohammadHossein Bateni, Aditya Bhaskara, Silvio Lattanzi, Vahab S. Mirrokni:

Distributed Balanced Clustering via Mapping Coresets. 2591-2599 - Jean-Baptiste Tristan, Daniel Huang, Joseph Tassarotti, Adam Craig Pocock, Stephen J. Green, Guy L. Steele Jr.:

Augur: Data-Parallel Probabilistic Modeling. 2600-2608 - Pranjal Awasthi, Avrim Blum, Or Sheffet, Aravindan Vijayaraghavan:

Learning Mixtures of Ranking Models. 2609-2617 - Yu Xin, Tommi S. Jaakkola:

Controlling privacy in recommender systems. 2618-2626 - Julien Mairal, Piotr Koniusz, Zaïd Harchaoui, Cordelia Schmid:

Convolutional Kernel Networks. 2627-2635 - Chongjie Zhang, Julie A. Shah:

Fairness in Multi-Agent Sequential Decision-Making. 2636-2644 - Adarsh Prasad, Stefanie Jegelka, Dhruv Batra:

Submodular meets Structured: Finding Diverse Subsets in Exponentially-Large Structured Item Sets. 2645-2653 - Jimmy Ba, Rich Caruana:

Do Deep Nets Really Need to be Deep? 2654-2662 - Shaobo Han, Lin Du, Esther Salazar, Lawrence Carin:

Dynamic Rank Factor Model for Text Streams. 2663-2671 - Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville, Yoshua Bengio:

Generative Adversarial Nets. 2672-2680 - De Wen Soh, Sekhar Tatikonda:

Testing Unfaithful Gaussian Graphical Models. 2681-2689 - Jasper De Bock, Cassio P. de Campos, Alessandro Antonucci:

Global Sensitivity Analysis for MAP Inference in Graphical Models. 2690-2698 - Charles Y. Zheng, Franco Pestilli, Ariel Rokem:

Deconvolution of High Dimensional Mixtures via Boosting, with Application to Diffusion-Weighted MRI of Human Brain. 2699-2707 - Jing Qian, Venkatesh Saligrama:

Efficient Minimax Signal Detection on Graphs. 2708-2716 - Yash Deshpande, Andrea Montanari, Emile Richard:

Cone-Constrained Principal Component Analysis. 2717-2725 - Ankit Garg, Tengyu Ma, Huy L. Nguyen:

On Communication Cost of Distributed Statistical Estimation and Dimensionality. 2726-2734 - Hau Chan, Luis E. Ortiz:

Computing Nash Equilibria in Generalized Interdependent Security Games. 2735-2743 - Oluwasanmi Koyejo, Nagarajan Natarajan, Pradeep Ravikumar, Inderjit S. Dhillon:

Consistent Binary Classification with Generalized Performance Metrics. 2744-2752 - Dohyung Park, Constantine Caramanis, Sujay Sanghavi:

Greedy Subspace Clustering. 2753-2761 - William E. Bishop, Byron M. Yu:

Deterministic Symmetric Positive Semidefinite Matrix Completion. 2762-2770 - Hanie Sedghi, Anima Anandkumar, Edmond A. Jonckheere:

Multi-Step Stochastic ADMM in High Dimensions: Applications to Sparse Optimization and Matrix Decomposition. 2771-2779 - Gergely Neu, Michal Valko:

Online combinatorial optimization with stochastic decision sets and adversarial losses. 2780-2788 - Tom Gunter, Michael A. Osborne, Roman Garnett, Philipp Hennig, Stephen J. Roberts:

Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature. 2789-2797 - Si Si, Donghyuk Shin, Inderjit S. Dhillon, Beresford N. Parlett:

Multi-Scale Spectral Decomposition of Massive Graphs. 2798-2806 - Michal Derezinski, Manfred K. Warmuth:

The limits of squared Euclidean distance regularization. 2807-2815 - Huahua Wang, Arindam Banerjee:

Bregman Alternating Direction Method of Multipliers. 2816-2824 - Kishan Wimalawarne, Masashi Sugiyama, Ryota Tomioka:

Multitask learning meets tensor factorization: task imputation via convex optimization. 2825-2833 - Seunghak Lee, Jin Kyu Kim, Xun Zheng, Qirong Ho, Garth A. Gibson, Eric P. Xing:

On Model Parallelization and Scheduling Strategies for Distributed Machine Learning. 2834-2842 - Alyson K. Fletcher, Sundeep Rangan:

Scalable Inference for Neuronal Connectivity from Calcium Imaging. 2843-2851 - Guy Bresler, David Gamarnik, Devavrat Shah:

Structure learning of antiferromagnetic Ising models. 2852-2860 - Moritz Hardt, Eric Price:

The Noisy Power Method: A Meta Algorithm with Applications. 2861-2869 - Falk Lieder, Dillon Plunkett, Jessica B. Hamrick, Stuart J. Russell, Nicholas Hay, Thomas L. Griffiths:

Algorithm selection by rational metareasoning as a model of human strategy selection. 2870-2878 - Peter Kairouz, Sewoong Oh, Pramod Viswanath:

Extremal Mechanisms for Local Differential Privacy. 2879-2887 - Romain Paulus, Richard Socher, Christopher D. Manning:

Global Belief Recursive Neural Networks. 2888-2896 - Emile Richard, Andrea Montanari:

A statistical model for tensor PCA. 2897-2905 - Shreya Saxena, Munther A. Dahleh:

Real-Time Decoding of an Integrate and Fire Encoder. 2906-2914 - H. Brendan McMahan, Matthew J. Streeter:

Delay-Tolerant Algorithms for Asynchronous Distributed Online Learning. 2915-2923 - Guido Montúfar, Razvan Pascanu, KyungHyun Cho, Yoshua Bengio:

On the Number of Linear Regions of Deep Neural Networks. 2924-2932 - Yann N. Dauphin, Razvan Pascanu, Çaglar Gülçehre, KyungHyun Cho, Surya Ganguli, Yoshua Bengio:

Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. 2933-2941 - João D. Semedo, Amin Zandvakili, Adam Kohn, Christian K. Machens, Byron M. Yu:

Extracting Latent Structure From Multiple Interacting Neural Populations. 2942-2950 - Qichao Que, Mikhail Belkin, Yusu Wang:

Learning with Fredholm Kernels. 2951-2959 - Michalis K. Titsias, Christopher Yau:

Hamming Ball Auxiliary Sampling for Factorial Hidden Markov Models. 2960-2968 - Yuri Grinberg, Doina Precup, Michel Gendreau:

Optimizing Energy Production Using Policy Search and Predictive State Representations. 2969-2977 - Deepak Venugopal, Vibhav Gogate

:
Scaling-up Importance Sampling for Markov Logic Networks. 2978-2986 - Alex K. Susemihl, Ron Meir, Manfred Opper:

Optimal Neural Codes for Control and Estimation. 2987-2995 - Ramya Korlakai Vinayak, Samet Oymak, Babak Hassibi:

Graph Clustering With Missing Data: Convex Algorithms and Analysis. 2996-3004 - Haichao Zhang, Jianchao Yang:

Scale Adaptive Blind Deblurring. 3005-3013 - Ashique Rupam Mahmood, Hado van Hasselt, Richard S. Sutton:

Weighted importance sampling for off-policy learning with linear function approximation. 3014-3022 - Shariq A. Mobin, James A. Arnemann, Fritz Sommer:

Information-based learning by agents in unbounded state spaces. 3023-3031 - Shashank Singh, Barnabás Póczos:

Exponential Concentration of a Density Functional Estimator. 3032-3040 - Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina Balcan, Le Song:

Scalable Kernel Methods via Doubly Stochastic Gradients. 3041-3049 - João F. Henriques, Pedro Martins, Rui F. Caseiro, Jorge Batista:

Fast Training of Pose Detectors in the Fourier Domain. 3050-3058 - Qihang Lin, Zhaosong Lu, Lin Xiao:

An Accelerated Proximal Coordinate Gradient Method. 3059-3067 - Martin Jaggi, Virginia Smith, Martin Takác, Jonathan Terhorst, Sanjay Krishnan, Thomas Hofmann, Michael I. Jordan:

Communication-Efficient Distributed Dual Coordinate Ascent. 3068-3076 - Roy Frostig, Sida Wang, Percy Liang, Christopher D. Manning:

Simple MAP Inference via Low-Rank Relaxations. 3077-3085 - Chris J. Maddison, Daniel Tarlow, Tom Minka:

A* Sampling. 3086-3094 - Patrick Putzky, Florian Franzen, Giacomo Bassetto, Jakob H. Macke:

A Bayesian model for identifying hierarchically organised states in neural population activity. 3095-3103 - Ilya Sutskever, Oriol Vinyals, Quoc V. Le:

Sequence to Sequence Learning with Neural Networks. 3104-3112 - Yingyu Liang, Maria-Florina Balcan, Vandana Kanchanapally, David P. Woodruff:

Improved Distributed Principal Component Analysis. 3113-3121 - Murat Kocaoglu, Karthikeyan Shanmugam

, Alexandros G. Dimakis, Adam R. Klivans:
Sparse Polynomial Learning and Graph Sketching. 3122-3130 - Syama Sundar Rangapuram, Pramod Kaushik Mudrakarta, Matthias Hein:

Tight Continuous Relaxation of the Balanced k-Cut Problem. 3131-3139 - Balaji Lakshminarayanan, Daniel M. Roy, Yee Whye Teh:

Mondrian Forests: Efficient Online Random Forests. 3140-3148 - Jennifer Gillenwater, Alex Kulesza, Emily B. Fox, Benjamin Taskar:

Expectation-Maximization for Learning Determinantal Point Processes. 3149-3157 - David I. Inouye, Pradeep Ravikumar, Inderjit S. Dhillon:

Capturing Semantically Meaningful Word Dependencies with an Admixture of Poisson MRFs. 3158-3166 - Se-Young Yun, Marc Lelarge, Alexandre Proutière:

Streaming, Memory Limited Algorithms for Community Detection. 3167-3175 - Prem Gopalan, Laurent Charlin, David M. Blei:

Content-based recommendations with Poisson factorization. 3176-3184 - Hossein Azari Soufiani, David C. Parkes, Lirong Xia:

A Statistical Decision-Theoretic Framework for Social Choice. 3185-3193 - Jianbo Yang, Xuejun Liao, Minhua Chen, Lawrence Carin:

Compressive Sensing of Signals from a GMM with Sparse Precision Matrices. 3194-3202 - Nan Ding, Youhan Fang, Ryan Babbush, Changyou Chen, Robert D. Skeel, Hartmut Neven:

Bayesian Sampling Using Stochastic Gradient Thermostats. 3203-3211 - Calvin McCarter, Seyoung Kim:

On Sparse Gaussian Chain Graph Models. 3212-3220 - Renato Negrinho, Andre Martins:

Orbit Regularization. 3221-3229 - Wouter M. Koolen, Alan Malek, Peter L. Bartlett:

Efficient Minimax Strategies for Square Loss Games. 3230-3238 - Miles Lopes:

A Residual Bootstrap for High-Dimensional Regression with Near Low-Rank Designs. 3239-3247 - Alex Kantchelian, Michael Carl Tschantz, Ling Huang, Peter L. Bartlett, Anthony D. Joseph, J. Doug Tygar:

Large-Margin Convex Polytope Machine. 3248-3256 - Yarin Gal, Mark van der Wilk, Carl E. Rasmussen:

Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models. 3257-3265 - Vivek Srikumar, Christopher D. Manning:

Learning Distributed Representations for Structured Output Prediction. 3266-3274 - Özlem Aslan, Xinhua Zhang, Dale Schuurmans:

Convex Deep Learning via Normalized Kernels. 3275-3283 - Emile Richard, Guillaume Obozinski, Jean-Philippe Vert:

Tight convex relaxations for sparse matrix factorization. 3284-3292 - He He, Hal Daumé III, Jason Eisner:

Learning to Search in Branch and Bound Algorithms. 3293-3301 - Somdeb Sarkhel, Deepak Venugopal, Parag Singla, Vibhav Gogate

:
An Integer Polynomial Programming Based Framework for Lifted MAP Inference. 3302-3310 - Waleed Ammar, Chris Dyer, Noah A. Smith:

Conditional Random Field Autoencoders for Unsupervised Structured Prediction. 3311-3319 - Jason Yosinski, Jeff Clune, Yoshua Bengio, Hod Lipson:

How transferable are features in deep neural networks? 3320-3328 - Tuo Zhao, Mo Yu, Yiming Wang, Raman Arora, Han Liu:

Accelerated Mini-batch Randomized Block Coordinate Descent Method. 3329-3337 - Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard L. Lewis, Xiaoshi Wang:

Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning. 3338-3346 - Guy Bresler, George H. Chen, Devavrat Shah:

A Latent Source Model for Online Collaborative Filtering. 3347-3355 - Minjie Xu, Balaji Lakshminarayanan, Yee Whye Teh, Jun Zhu, Bo Zhang:

Distributed Bayesian Posterior Sampling via Moment Sharing. 3356-3364 - Philip Bachman, Ouais Alsharif, Doina Precup:

Learning with Pseudo-Ensembles. 3365-3373 - Nan Du, Yingyu Liang, Maria-Florina Balcan, Le Song:

Learning Time-Varying Coverage Functions. 3374-3382 - Zhaoran Wang, Huanran Lu, Han Liu:

Tighten after Relax: Minimax-Optimal Sparse PCA in Polynomial Time. 3383-3391 - Shubhendu Trivedi, David A. McAllester, Greg Shakhnarovich:

Discriminative Metric Learning by Neighborhood Gerrymandering. 3392-3400 - Qing Qu, Ju Sun, John Wright:

Finding a sparse vector in a subspace: Linear sparsity using alternating directions. 3401-3409 - Brooks Paige, Frank D. Wood, Arnaud Doucet, Yee Whye Teh:

Asynchronous Anytime Sequential Monte Carlo. 3410-3418 - Wei Liu, Cun Mu, Sanjiv Kumar, Shih-Fu Chang:

Discrete Graph Hashing. 3419-3427 - Stefan Wager, Nick Chamandy, Omkar Muralidharan, Amir Najmi:

Feedback Detection for Live Predictors. 3428-3436 - Kamalika Chaudhuri, Sanjoy Dasgupta:

Rates of Convergence for Nearest Neighbor Classification. 3437-3445 - Daniel Berend, Aryeh Kontorovich:

Consistency of weighted majority votes. 3446-3454 - Mingyuan Zhou:

Beta-Negative Binomial Process and Exchangeable Random Partitions for Mixed-Membership Modeling. 3455-3463 - Dinesh Jayaraman, Kristen Grauman:

Zero-shot recognition with unreliable attributes. 3464-3472 - Po-Ling Loh, Andre Wibisono:

Concavity of reweighted Kikuchi approximation. 3473-3481 - Arun Rajkumar, Shivani Agarwal:

Online Decision-Making in General Combinatorial Spaces. 3482-3490 - Mohammad Taha Bahadori, Qi Rose Yu, Yan Liu:

Fast Multivariate Spatio-temporal Analysis via Low Rank Tensor Learning. 3491-3499 - Lars Buesing, Timothy A. Machado, John P. Cunningham, Liam Paninski:

Clustered factor analysis of multineuronal spike data. 3500-3508 - Yinlam Chow, Mohammad Ghavamzadeh:

Algorithms for CVaR Optimization in MDPs. 3509-3517 - Aäron van den Oord, Benjamin Schrauwen:

Factoring Variations in Natural Images with Deep Gaussian Mixture Models. 3518-3526 - Hidekazu Oiwa, Ryohei Fujimaki:

Partition-wise Linear Models. 3527-3535 - Judy Hoffman

, Sergio Guadarrama, Eric Tzeng, Ronghang Hu, Jeff Donahue, Ross B. Girshick, Trevor Darrell, Kate Saenko:
LSDA: Large Scale Detection through Adaptation. 3536-3544 - Marijn F. Stollenga, Jonathan Masci, Faustino J. Gomez, Jürgen Schmidhuber:

Deep Networks with Internal Selective Attention through Feedback Connections. 3545-3553 - Yingbo Zhou, Utkarsh Porwal, Ce Zhang, Hung Q. Ngo, XuanLong Nguyen, Christopher Ré, Venu Govindaraju:

Parallel Feature Selection Inspired by Group Testing. 3554-3562 - Cédric Févotte, Matthieu Kowalski:

Low-Rank Time-Frequency Synthesis. 3563-3571 - Luca Pasa, Alessandro Sperduti:

Pre-training of Recurrent Neural Networks via Linear Autoencoders. 3572-3580 - Diederik P. Kingma, Shakir Mohamed, Danilo Jimenez Rezende, Max Welling:

Semi-supervised Learning with Deep Generative Models. 3581-3589 - Mingjun Zhong, Nigel H. Goddard, Charles Sutton:

Signal Aggregate Constraints in Additive Factorial HMMs, with Application to Energy Disaggregation. 3590-3598 - Nicholas J. Foti, Jason Xu, Dillon Laird, Emily B. Fox:

Stochastic variational inference for hidden Markov models. 3599-3607 - Kacper Chwialkowski, Dino Sejdinovic, Arthur Gretton:

A Wild Bootstrap for Degenerate Kernel Tests. 3608-3616 - Luke J. O'Connor, Soheil Feizi:

Biclustering Usinig Message Passing. 3617-3625 - Andrew Gordon Wilson, Elad Gilboa, John P. Cunningham, Arye Nehorai:

Fast Kernel Learning for Multidimensional Pattern Extrapolation. 3626-3634 - Rakesh Shivanna, Chiranjib Bhattacharyya:

Learning on graphs using Orthonormal Representation is Statistically Consistent. 3635-3643 - Andrew M. McDonald, Massimiliano Pontil, Dimitris Stamos:

Spectral k-Support Norm Regularization. 3644-3652 - Pietro Vertechi, Wieland Brendel, Christian K. Machens:

Unsupervised learning of an efficient short-term memory network. 3653-3661 - Yuancheng Zhu, John D. Lafferty:

Quantized Estimation of Gaussian Sequence Models in Euclidean Balls. 3662-3670 - Viet-An Nguyen, Jordan L. Boyd-Graber, Philip Resnik, Jonathan D. Chang:

Learning a Concept Hierarchy from Multi-labeled Documents. 3671-3679 - Roger Frigola, Yutian Chen, Carl E. Rasmussen:

Variational Gaussian Process State-Space Models. 3680-3688 - Cho-Jui Hsieh, Si Si, Inderjit S. Dhillon:

Fast Prediction for Large-Scale Kernel Machines. 3689-3697

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














