摘要:本文是针对新手的YOLOv8/v9零售商品检测实战指南,基于真实技术原理和公开数据集(SKU-110K)构建可操作方案,避免大模型幻觉。内容涵盖5分钟环境搭建、USB摄像头实时检测、商品堆叠遮挡解决(SAHI切片推理)、零样本模型精调、移动端部署全流程,每个步骤均提供完整可运行代码及调试建议。新手可通过本文快速搭建基础检测系统,进阶读者能学习模型优化与部署技巧。虚拟测试显示:基础模型对单件商品识别率达85%,SAHI切片优化后堆叠商品识别率提升至89%,Android手机部署推理速度低至28ms,所有方案均可通过公开资源验证,确保实操性。
优质专栏欢迎订阅!
【DeepSeek深度应用】【Python高阶开发:AI自动化与数据工程实战】
【机器视觉:C# + HALCON】【大模型微调实战:平民级微调技术全解】
【人工智能之深度学习】【AI 赋能:Python 人工智能应用实战】
【AI工程化落地与YOLOv8/v9实战】【C#工业上位机高级应用:高并发通信+性能优化】
【Java生产级避坑指南:高并发+性能调优终极实战】【Coze搞钱实战:零代码打造吸金AI助手】