摘要:股价预测是量化投资的核心难题,传统LSTM点预测因忽视不确定性和极端风险,易导致投资决策失误。本文以沪深300指数(000300.SS)为研究对象,基于Yahoo Finance公开数据,构建“LSTM预测+蒙特卡洛模拟”的风险控制框架:先通过LSTM学习历史股价、交易量与波动率的时序规律,再利用蒙特卡洛生成1000条未来价格路径,量化下跌概率、5%最坏情况等风险指标。实验显示,该框架较传统LSTM能多捕捉3次暴跌事件,最大回撤减少32%(从-22%至-15%)。需特别强调:本文为虚拟教学案例,所有结果基于历史回测,不可用于真实投资决策,股价预测仍受市场情绪、政策等不可控因素影响。
优质专栏欢迎订阅!
【DeepSeek深度应用】【Python高阶开发:AI自动化与数据工程实战】
【机器视觉:C# + HALCON】【大模型微调实战:平民级微调技术全解】
【人工智能之深度学习】【AI 赋能:Python 人工智能应用实战】
【AI工程化落地与YOLOv8/v9实战】【C#工业上位机高级应用:高并发通信+性能优化】
【Java生产级避坑指南:高并发+性能调优终极实战】【Coze搞钱实战:零代码打造吸金AI助手】