摘要:本文聚焦考古修复中文物碎片分类的核心需求,基于YOLOv11提出解决方案,针对碎片边缘残缺、纹饰断裂、材质风化三大难题,实现高效分类与匹配。引用《田野考古工作规程》标准,采用Archaeological Fragments Dataset数据集,通过局部特征增强技术(局部卷积+边缘注意力)与纹饰连续性恢复算法,在汉代陶片测试集上实现93.7%的分类准确率和86.8%的纹饰匹配度。介绍以Samsung Galaxy Tab Active4为核心的移动终端部署方案,集成3D扫描与AR展示,实现碎片快速识别与虚拟复原。文中提供完整代码、数据采集规范及训练调参指南,兼顾考古实操性与可复现性,为博物馆数字化修复提供技术支撑。
优质专栏欢迎订阅!
【DeepSeek深度应用】【Python高阶开发:AI自动化与数据工程实战】
【机器视觉:C# + HALCON】【大模型微调实战:平民级微调技术全解】
【人工智能之深度学习】【AI 赋能:Python 人工智能应用实战】
【AI工程化落地与YOLOv8/v9实战】【C#工业上位机高级应用:高并发通信+性能优化】
【Java生产级避坑指南:高并发+性能调优终极实战】【Coze搞钱实战:零代码打造吸金AI助手】