摘要:本文针对纺织生产中布匹瑕疵检测的痛点,基于YOLOv11提出柔性材料适应性解决方案,解决纹理干扰、瑕疵形态多变及高速检测难题。参考GB/T 406-2018标准,采用AITEX公开数据集,通过可变形卷积(DCNv2)与多尺度Gabor滤波融合技术,在60m/min速度下实现96.8%的断经检出率和94.2%的油污检出率,误报率低至0.3%。详细介绍智能验布机的硬件配置(线阵相机、条形光源等)、实时处理流程及同步控制逻辑,提供不同布料的动态参数调整表与误报抑制方案。文中代码附详细注释,适合纺织企业技术人员参考部署,助力实现高效质检。
优质专栏欢迎订阅!
【DeepSeek深度应用】【Python高阶开发:AI自动化与数据工程实战】
【机器视觉:C# + HALCON】【大模型微调实战:平民级微调技术全解】
【人工智能之深度学习】【AI 赋能:Python 人工智能应用实战】
【AI工程化落地与YOLOv8/v9实战】【C#工业上位机高级应用:高并发通信+性能优化】
【Java生产级避坑指南:高并发+性能调优终极实战】【Coze搞钱实战:零代码打造吸金AI助手】