摘要:Seq2Seq+Attention是生成式对话系统的经典架构,也是理解现代LLM对话原理的基础。本文以“电影主题聊天机器人”为实战案例,基于Cornell Movie-Dialogs数据集,提供从数据清洗、文本预处理到模型构建、训练推理的全流程可复现方案。详细讲解Seq2Seq的“编码器-解码器”流程与Bahdanau注意力机制的计算逻辑,用PyTorch实现完整模型(含Teacher Forcing加速训练),解决OOV词汇、通用回复等常见问题。代码均经过实测,附执行结果与可视化(如注意力权重热力图),既适合新手入门对话系统核心原理,也为进阶读者提供项目优化思路。需注意:本案例为教学演示,对话能力与商用LLM有差距,重点在于掌握经典技术的实现细节。
优质专栏欢迎订阅!
【DeepSeek深度应用】【Python高阶开发:AI自动化与数据工程实战】【YOLOv11工业级实战】
【机器视觉:C# + HALCON】【大模型微调实战:平民级微调技术全解】
【人工智能之深度学习】【AI 赋能:Python 人工智能应用实战】
【AI工程化落地与YOLOv8/v9实战】【C#工业上位机高级应用:高并发通信+性能优化】
【Java生产级避坑指南:高并发+性能调优终极实战】【Coze搞钱实战:零代码打造吸金AI助手】
文章目录
- 【AI 赋能:Python 人工智能应用实战】18. 对话系统实战:从0到1用Seq2Seq+Attention构建电影聊天机器人(附完整PyTorch代码)
- 一、对话系统分类:先搞懂“我们要做什么”
- 二、核心技术:Seq2Seq+Attention的“底层逻辑”
- 三、实战:构建电影聊天机器人(完整流程+代码)