摘要:某物联网平台(日均设备心跳10亿+)使用AtomicLong实现计数器时,在每秒10万+并发场景下遭遇性能瓶颈:CPU使用率飙升至90%、吞吐量停滞、GC压力剧增。经排查,根源是AtomicLong的伪共享问题——多核CPU同时修改时触发频繁缓存行无效化,导致大量CAS重试。本文从CPU缓存原理切入,详解伪共享对并发性能的影响,对比AtomicLong与LongAdder的实现差异,通过JMH压测验证:在32线程高并发下,LongAdder的QPS(3215万)是AtomicLong(84万)的37倍。同时提供完整实操方案:从代码改造、JMH测试、生产监控到分布式扩展,覆盖低竞争到高并发全场景,帮助新手和进阶开发者掌握LongAdder的适用场景与最佳实践,解决高并发计数的性能痛点。
优质专栏欢迎订阅!
【DeepSeek深度应用】【Python高阶开发:AI自动化与数据工程实战】【YOLOv11工业级实战】
【机器视觉:C# + HALCON】【大模型微调实战:平民级微调技术全解】
【人工智能之深度学习】【AI 赋能:Python 人工智能应用实战】
【AI工程化落地与YOLOv8/v9实战】【C#工业上位机高级应用:高并发通信+性能优化】
【Java生产级避坑指南:高并发+性能调优终极实战】【Coze搞钱实战:零代码打造吸金AI助手】