专注于人工智能、软件开发、工控自动化、工厂数字化及智能化等领域,希望和大家共同进步!

聚焦人工智能、软件开发、工控自动化等领域,分享知识与经验,助力工厂数字化智能化,携手大家共探前沿,一起成长进步!

  • 博客(755)
  • 资源 (3)
  • 收藏
  • 关注

原创 【免费分享】C# + HALCON 机器视觉专栏:从入门到工业级实战,一文解锁视觉开发全技能!

本文为《机器视觉:C# + HALCON》专栏的引流博文,聚焦工业视觉开发中的实际痛点(如环境配置复杂、算法鲁棒性低、系统集成难等),以“实战落地”为核心,详细介绍专栏的技术覆盖范围、工业级案例、适用人群及订阅价值。专栏以C# .NET Core 6/7与HALCON 24.11为技术栈,涵盖环境搭建、图像采集、模板匹配、缺陷检测、3D测量、系统部署等全流程,附118篇文章的完整源码与实测数据(如手机部件定位精度±0.07mm、PCB焊点漏检率0.1%)。

2025-08-22 17:54:57 618 5

原创 【YOLOv11工业级实战】22. YOLOv11动态蛇形卷积破解弯曲裂纹检测难题(附2小时部署代码)

摘要:本文聚焦工业场景中弯曲裂纹检测的核心痛点,针对风电叶片、织物纱线等曲线缺陷传统检测漏检率高的问题,提出基于动态蛇形卷积(DSC)的YOLOv11优化方案。因企业数据保密,采用AITEX织物缺陷库(含曲线纱线断裂标签)结合Blender物理仿真生成2000张弯曲裂纹数据,实现从数据准备到部署的全流程实操。通过将DSC模块插入YOLOv11 Neck层,弯曲裂纹召回率从68.1%提升至89.4%,[email protected]达83.7%,推理速度3.1ms(2080Ti)。

2025-08-23 12:07:48 493

原创 【YOLOv11工业级实战】21. YOLOv11零售实战:顾客行为分析(多目标轨迹追踪|边缘云协同)

摘要:本文聚焦零售场景中顾客行为分析的核心需求,基于YOLOv11提出多目标轨迹追踪与边缘云协同方案,解决密集遮挡、ID切换、隐私合规三大难题。参考沃尔玛顾客行为分析指标(停留时长、热区分布等),采用Retail-Store-Tracking脱敏数据集,通过部位感知ReID增强技术,在遮挡场景下实现86.9%的ID保持率;结合边缘端实时脱敏(人脸高斯模糊)与云端轨迹拼接,满足GDPR/CCPA隐私要求。详细介绍从设备部署(摄像头/边缘终端选型)、模型训练(ReID网络配置)到行为分析。

2025-08-23 10:11:22 336

原创 【C#工业上位机高级应用】8. 工业安全通信实战:OPC UA证书自动签发与管理体系搭建指南

摘要:在工业自动化场景中,OPC UA作为主流通信协议,其安全依赖证书实现身份认证与数据加密,但多设备环境下手动管理证书易导致效率低、过期停产、安全策略混乱等问题。本文以某汽车厂200+台OPC UA设备的管理困境为切入点,详细讲解OPC UA证书自动管理体系的构建:从企业根CA搭建(基于OpenSSL)、证书自动签发服务开发,到生命周期监控(过期预警、自动续期)与撤销管理,提供完整实操流程与代码示例。同时涵盖私钥安全存储、访问控制、审计日志等工业级安全实践,解决证书管理低效、风险不可控的痛点。

2025-08-22 16:32:59 618 20

原创 【Java生产级避坑指南】8. Tomcat线程池下的内存地雷:ThreadLocal泄漏检测与实战解决

摘要:某金融交易系统(Spring Boot 2.7 + Tomcat 9)在线上运行时出现严重内存泄漏:堆内存(4GB)72小时内耗尽并触发OOM,日均200万请求场景下,Full GC频率从正常1次/天飙升至6次/小时。排查发现,根源是ThreadLocal未清理——Tomcat线程池复用线程时,UserInfo等大对象被ThreadLocalMap强引用,无法被GC回收。本文详细讲解ThreadLocal内存泄漏原理,提供Arthas实时诊断、MAT内存分析、自定义监控端点3种实操检测方法。

2025-08-22 16:01:54 575 17

原创 【Python高阶开发】8. 工业时序数据异常检测实战:从入门到落地(附完整代码+公开数据集)

摘要:工业设备传感器产生的时序数据蕴含设备健康、生产状态等关键信息,异常检测是预防故障、保障生产的核心技术。本文从工业场景实际需求出发,先讲解时序异常检测的价值与核心概念,再基于公开数据集(NASA涡轮发动机、SKAB工业基准),手把手教你完成从数据准备到模型落地的全流程。内容涵盖3类实用算法:统计方法(Z-score)、机器学习(Isolation Forest/LOF)、深度学习(LSTM Autoencoder),附完整可运行代码及执行结果。

2025-08-22 14:59:24 652 8

原创 【HALCON工业视觉应用探索】07. C#+Halcon工业视觉尺寸测量:从入门到工业级高精度实战(附完整代码+问题排查)

摘要:本文聚焦C#+Halcon在工业视觉尺寸测量领域的实战应用,从新手友好的“十五分钟快速搭建测量系统”入手,逐步深入到工业级高精度测量系统的设计与部署。内容涵盖核心概念(相机校准、边缘检测、几何拟合)、原理剖析(坐标系转换、精度影响因素)、完整代码实现(相机校准、图像预处理、尺寸计算、SPC分析),以及现场部署的关键技巧(硬件选型、振动防护、光照控制、温度补偿)。针对工业现场常见问题(边缘模糊、反光干扰、精度漂移)提供可落地的解决方案,并通过真实汽车零部件测量案例(活塞销孔直径检测)验证系统性能。

2025-08-21 15:47:09 824 29

原创 「自然语言驱动生产力」30. 从零实战:自然语言生成Markdown文档的完整指南(附可运行代码)

摘要:手动编写Markdown文档常面临耗时久、格式不统一、代码与文档不同步等痛点,尤其在项目迭代频繁时,文档维护成本极高。本文基于Python与自然语言处理(NLP)技术,提供一套可落地的“自然语言→Markdown文档”生成方案:支持OpenAI API(快速上手)与开源LLaMA 2模型(本地免费部署),覆盖从环境搭建、核心功能实现到项目文档自动化的全流程。内容包括基础文档生成、API接口文档自动生成、项目完整文档批量构建,每个功能均提供可运行代码与实测结果,同时讲解文档优化技巧与成本控制方法。

2025-08-21 14:22:50 772 13

原创 【人工智能之深度学习】20. 交通流量预测实战:用GCN构建城市路网预测模型(PeMS数据集+PyTorch Geometric全流程)

摘要:城市交通流量预测是智慧交通的核心任务,传统LSTM/CNN模型因忽视路网拓扑结构(如传感器间的道路连接关系),难以精准捕捉拥堵传播规律。本文以公开PeMSD4数据集(旧金山湾区交通数据)为基础,采用图卷积网络(GCN)构建预测模型——通过将交通传感器视为“节点”、道路连接视为“边”,结合PyTorch Geometric工具实现端到端时空预测。

2025-08-21 13:22:18 587 7

原创 【AI 赋能:Python 人工智能应用实战】17. 知识图谱实战:从0到1用Neo4j+Python构建AI学术图谱(含实体关系抽取完整代码)

摘要:知识图谱是AI理解世界的核心基础设施,但新手常因“技术复杂”“无实操指南”望而却步。本文以“构建AI学术圈微型知识图谱”为实战案例,从问题价值出发,详解Neo4j图数据库选型原因与安装步骤,完整覆盖“数据准备→命名实体识别(NER)→关系抽取(RE)→Neo4j入库→查询应用”全流程。NER部分基于BERT微调实现实体提取(含BIO格式后处理完整代码),RE部分通过实体标记增强模型聚焦能力,Neo4j入库采用MERGE避免重复数据。所有代码可复现,关键步骤附执行结果。

2025-08-21 12:42:15 637 5

原创 YOLOv8/v5田间病虫害检测新手实战:从环境搭建到移动端部署(附PlantVillage数据集实操)

摘要:本文是针对新手的YOLOv8/v5田间病虫害检测实战指南,基于PlantVillage公开数据集(可直接下载)和实验室验证流程,避免技术夸大。内容涵盖5分钟环境搭建、USB摄像头实时检测、专业模型训练、田间环境优化、边缘/移动端部署全流程,每个步骤均提供完整可运行代码及新手避坑提示。实验室测试显示:预训练模型对苹果黑星病、番茄早疫病等常见病斑识别率达70%+,专用模型训练后[email protected]提升至0.75-0.78,树莓派4B部署推理速度2-3 FPS、中端手机达10-15 FPS。

2025-08-21 10:28:40 277 10

原创 【大模型微调实战】16. 企业知识库问答系统防幻觉实战:RAG+边界检测,4小时搭建高准确率知识助手(ChromaDB+LangChain完整代码)

摘要:企业知识库问答系统常因大模型幻觉造成实际损失——某制造企业曾因系统虚构设备参数(800kg误报1200kg)、错误维修流程,导致8万维修成本+20万客户索赔。本文基于“检索增强生成(RAG)+三重防幻觉机制”,提供四步落地方案:2小时构建结构化知识库(ChromaDB+文档清洗)、1小时配置RAG检索增强(过滤低相似度内容)、30分钟搭建知识边界检测(阻断跨部门/超范围问题)、30分钟测试验证(注入陷阱用例)。

2025-08-21 10:08:12 238 1

原创 【Coze搞钱实战】16. 跨境电商订单追踪自动化:24小时多语言查询实战(Coze+快递100搭建,客服成本降50%)

摘要:跨境电商面临订单追踪的核心痛点:时差导致买家咨询集中、多语言沟通障碍、客服手动查询效率低下。本文提供可落地的自动化方案:通过Coze平台搭建多语言查询Bot,对接快递100 API实现全球物流信息实时调取,1.5小时即可完成基础配置。某欧美家居独立站实测显示,该方案使单次查询耗时从3分钟缩至15秒,物流咨询量减少77%,客服成本降低50%。文中包含完整API配置代码、多语言话术模板、避坑指南,新手无需编程基础即可实操,进阶部分提供异常物流告警的推演思路,兼顾实用性与技术前瞻性。

2025-08-21 09:44:20 446 1

原创 【存算一体架构实战】十一、对抗大模型幻觉:存算一体环境下的本地知识库问答系统实战

摘要:存算一体架构因低精度计算(如INT8)和有限片上内存,易导致大模型语义偏移与知识缺失,幻觉率较传统云部署高3-5倍,在电网、医疗等零容忍场景中风险显著。本文提出“RAG检索锁定+规则引擎拦截+轻量模型生成”的三层防御体系,通过WTM2101存算开发板实战验证:基于公开语料构建本地知识库,采用MiniLM向量化与TinyBERT(INT8量化)生成,结合正则规则拦截敏感问题。虚拟案例(电网设备问答)显示,该方案幻觉率从传统大模型的9.2%降至1.8%,响应延迟68ms,能耗0.3J。

2025-08-21 09:14:09 39 1

原创 奈飞推荐算法优化实战:从架构设计到代码落地(附完整实操流程)

摘要:本文聚焦奈飞(Netflix)推荐系统的算法优化实战,从“算法工厂”的核心逻辑切入,拆解其经典的“召回-排序”两级流水线架构,详解矩阵分解、深度学习等核心算法的原理与实操。文中结合真实业务场景,提供从数据预处理、模型训练到A/B测试、模型部署的完整流程,包含可直接运行的Python代码(基于MovieLens公开数据集)及执行结果。同时,针对新手常见的“数据稀疏性”“模型落地难”等问题给出解决方案,为进阶读者解析A/B测试优化、隐私保护等工程实践。

2025-08-20 21:36:07 661 2

原创 【YOLOv11工业级实战】20. YOLOv11仓储物流实战:包裹分拣(复杂堆叠场景|机械臂协同系统)

摘要:本文聚焦仓储物流中包裹分拣的核心难题,基于YOLOv11提出RGB-D融合的解决方案,针对性解决包裹堆叠、形状多变、标签遮挡三大挑战。参考京东亚洲一号智能仓库标准,采用HOPE公开数据集,通过点云辅助分割技术,在5层堆叠场景实现95.7%的单包裹分割准确率。详细介绍机械臂协同系统的硬件配置(工业3D相机、UR10e机械臂等)、端到端工作流及抓取规划算法,提供系统校准流程与训练调参指南。文中代码附详细注释,涵盖堆叠场景模拟、点云分割、机械臂路径规划等关键环节,适合物流企业技术人员参考部署。

2025-08-20 08:47:33 684 30

原创 【YOLOv11工业级实战】19. YOLOv11纺织质检实战:布匹瑕疵检测(柔性材料适应性|智能验布机部署)

摘要:本文针对纺织生产中布匹瑕疵检测的痛点,基于YOLOv11提出柔性材料适应性解决方案,解决纹理干扰、瑕疵形态多变及高速检测难题。参考GB/T 406-2018标准,采用AITEX公开数据集,通过可变形卷积(DCNv2)与多尺度Gabor滤波融合技术,在60m/min速度下实现96.8%的断经检出率和94.2%的油污检出率,误报率低至0.3%。详细介绍智能验布机的硬件配置(线阵相机、条形光源等)、实时处理流程及同步控制逻辑,提供不同布料的动态参数调整表与误报抑制方案。文中代码附详细注释,可供大家参考。

2025-08-20 08:47:22 478 8

原创 【YOLOv11工业级实战】18. YOLOv11食品安全实战:X光异物检测(多尺度分析|产线高速部署)

摘要:本文聚焦食品生产线上的异物检测需求,基于YOLOv11提出多尺度X光分析方案,解决微小异物检出难、食品纹理干扰、高速检测效率低三大问题。参考FDA异物控制标准,采用Food-Xray公开数据集,通过微焦点X光增强、区域自适应增强算法,实现0.5mm金属异物99.2%的检出率,误报率低至0.07%。详细介绍产线部署的硬件配置(X光机、工业计算机、剔除装置)、实时处理流程及同步控制逻辑,提供防误剔策略与参数调优指南。文中代码均附注释,适合新手快速上手,实操案例基于真实产线需求设计,可供大家参考。

2025-08-20 08:47:13 321 6

原创 【YOLOv11工业级实战】17. YOLOv11考古实战:文物碎片分类(残缺特征提取|移动博物馆终端)

摘要:本文聚焦考古修复中文物碎片分类的核心需求,基于YOLOv11提出解决方案,针对碎片边缘残缺、纹饰断裂、材质风化三大难题,实现高效分类与匹配。引用《田野考古工作规程》标准,采用Archaeological Fragments Dataset数据集,通过局部特征增强技术(局部卷积+边缘注意力)与纹饰连续性恢复算法,在汉代陶片测试集上实现93.7%的分类准确率和86.8%的纹饰匹配度。介绍以Samsung Galaxy Tab Active4为核心的移动终端部署方案,集成3D扫描与AR展示,实现碎片快速识别

2025-08-20 08:47:01 489 4

原创 【YOLOv11工业级实战】16. YOLOv11地质勘探实战:岩矿智能识别(多光谱分析|野外加固平板部署)

摘要:本文聚焦地质勘探中岩矿识别的实际需求,基于YOLOv11提出解决方案,旨在攻克岩石表面相似、矿物反光干扰、野外光照多变三大难题。引用《岩石矿物鉴定手册》标准,采用USGS岩矿光谱库数据集,通过多光谱融合技术(可见光-近红外特征融合)与矿物反光抑制算法,在野外多变光照下实现93.7%的识别准确率,误判率低至6.4%。介绍了以Getac F110加固平板为核心的部署方案,集成便携光谱仪与外置偏振镜头,实现岩矿的快速识别与成分报告生成。文中提供完整代码、数据采集流程及训练调参指南,兼顾野外实操性与可复现性。

2025-08-20 08:46:44 413 5

原创 【YOLOv11工业级实战】15. YOLOv11海洋监测实战:珊瑚礁健康评估(水下图像增强|机器人搭载)

摘要:本文针对珊瑚礁健康评估的海洋监测需求,基于YOLOv11提出解决方案,聚焦水下色偏、悬浮物干扰、珊瑚形态复杂三大难题。引用全球珊瑚礁监测网络(GCRMN)标准,采用CoralNet数据集,通过Jaffe-McGlamery物理模型引导增强与悬浮物去除算法,在浑浊水域(能见度<5m)实现87.3%的健康珊瑚识别率,藻类误判率低至7.2%。介绍了以BlueROV2水下机器人和Jetson AGX Orin为核心的部署方案,结合水下SLAM定位技术,实现珊瑚健康的实时评估与三维覆盖率计算。

2025-08-19 13:09:46 717 24

原创 【YOLOv11工业级实战】14. YOLOv11环保实战:珍稀野生动物识别(伪装环境突破|红外相机联动)

摘要:本文针对珍稀野生动物保护中识别难的问题,基于YOLOv11提出解决方案,聚焦动物伪装、动态模糊、极端光照三大挑战。引用IUCN濒危物种红色名录,采用WCS野生动物影像库数据集,通过仿生注意力机制(鹰眼注意力与变色龙卷积)和动态模糊鲁棒训练,在复杂环境下实现89.4%的目标检出率,误报率低至5.2%。介绍了由红外触发相机、4G传输模块和边缘计算单元组成的野外系统,结合多光谱融合技术,实现对东北虎、雪豹等珍稀动物的有效识别。文中提供完整代码、训练调参指南及高频问题解决方案,兼顾实用性与可复现性,供大家参考

2025-08-19 13:09:27 503 13

原创 【YOLOv11工业级实战】13. YOLOv11电力巡检实战:绝缘子缺陷识别(高空图像增强|无人机边缘计算)

摘要:本文针对电力巡检中绝缘子缺陷识别的难题,依据国家电网Q/GDW 11389-2019规程,提出基于YOLOv11的解决方案。重点解决高空拍摄抖动、小目标识别及复杂背景干扰问题,采用SIFT特征增强与自适应对比度提升技术,在50米高空场景下,使≥5cm小缺陷检出率达92.6%,误报率低至4.1%。介绍了以大疆M300 RTK无人机与Jetson Xavier NX为核心的边缘部署方案,实现0.9秒/帧的实时识别。文中提供完整代码、训练调参指南及安全作业规范,涵盖防电磁干扰设计与自动避障流程,供大家参考。

2025-08-19 13:09:07 749 6

原创 【YOLOv11工业级实战】12. YOLOv11水利监测实战:河道漂浮物识别(水流干扰克服|海思芯片部署)

摘要:本文聚焦水利监测中河道漂浮物识别的实际难题,结合水利部《河湖垃圾监测技术导则》,提出基于YOLOv11的解决方案。针对水流干扰、漂浮物变形和低光照等挑战,采用背景差分动态建模与三帧差分时间域特征融合技术,在RiverWaste数据集上实现湍流场景下93%的[email protected],误检率低至4.2%。详细介绍了海思Hi3519AV200/Hi3559AV100芯片的边缘部署流程,包括模型量化、硬解码优化及端到端处理实现。文中提供完整的代码示例、训练调参指南和高频问题解决方案,确保新手与进阶读者均可参考实施。

2025-08-19 13:08:42 585 3

原创 【YOLOv11工业级实战】11. YOLOv11卫星遥感实战:农作物分类与产量预估(多光谱融合|无人机联动)

摘要:本文针对农业遥感中的作物混种识别、小地块分割、云层干扰三大难题,提出基于YOLOv11的多光谱融合解决方案。参考联合国粮农组织(FAO)作物分类标准,采用Sentinel-2多光谱卫星影像(10米分辨率),通过云掩膜处理消除云层干扰。创新设计通道级光谱注意力机制,融合13个波段特征,实现水稻、玉米、冬小麦92%以上的分类准确率。开发卫星-无人机协同系统,结合边缘计算实现田间实时监测,产量预估误差控制在10%以内。文中提供完整的多光谱数据处理、模型训练及无人机联动代码,可供大家参考。

2025-08-19 13:08:25 779 5

原创 【HALCON工业视觉应用探索】06. C#+Halcon产品表面缺陷检测:入门到工业级实战指南

摘要:产品表面缺陷检测是电子、汽车、机械等行业质量控制的核心环节,传统人工检测存在效率低、误检率高、成本高等问题。本文基于C#与Halcon 24.11,从零构建工业级缺陷检测系统:先通过十分钟搭建基础检测流程(以电子元件划痕/污渍检测为例),再进阶实现PCB板焊点缺陷(虚焊/锡珠/偏移)的混合检测方案(传统算法+深度学习),详解图像预处理、模板匹配、差异分析、结果融合等核心技术。在MVTec AD公开数据集测试中,本方案对明显缺陷识别率达100%,微小污渍检测率92%,处理速度350ms/件。

2025-08-18 14:54:38 793 25

原创 「自然语言驱动生产力」29. Excel自动化实战:自然语言转数据分析报表指南(非技术人员也能轻松上手)

摘要:在日常工作中,数据分析师、业务人员常需重复制作Excel报表(如销售汇总、客户排名、趋势分析),这类工作耗时且易出错。本文基于微软官方工具Office Scripts,提供一套“自然语言驱动+可视化操作+定时自动化”的Excel报表生成方案——无需编程基础,通过“录制脚本→编辑参数→定时运行”三步,即可实现从数据导入到报表生成、邮件分发的全流程自动化。以“销售数据分析”为虚拟案例,详细拆解基础报表生成、智能图表制作、Power Automate定时调度的实操步骤.

2025-08-18 13:51:21 384 12

原创 【人工智能之深度学习】19. 股价预测实战:LSTM+蒙特卡洛模拟量化投资风险(虚拟案例)

摘要:股价预测是量化投资的核心难题,传统LSTM点预测因忽视不确定性和极端风险,易导致投资决策失误。本文以沪深300指数(000300.SS)为研究对象,基于Yahoo Finance公开数据,构建“LSTM预测+蒙特卡洛模拟”的风险控制框架:先通过LSTM学习历史股价、交易量与波动率的时序规律,再利用蒙特卡洛生成1000条未来价格路径,量化下跌概率、5%最坏情况等风险指标。实验显示,该框架较传统LSTM能多捕捉3次暴跌事件,最大回撤减少32%(从-22%至-15%)。需特别强调:本文为虚拟教学案例。

2025-08-18 12:29:48 520 9

原创 【AI 赋能:Python 人工智能应用实战】16. BERT微调实战:中文新闻分类全流程(附模型蒸馏+ONNX部署完整代码)

中文新闻分类是NLP领域的经典实用任务,BERT模型凭借双向上下文建模能力,能有效解决中文歧义与长文本依赖问题,但存在推理速度慢、资源占用高的痛点。本文以THUCNews中文新闻数据集为核心,提供从数据预处理、BERT微调、模型蒸馏到生产部署的全流程实操指南。首先详解THUCNews的多编码读取与清洗(解决gbk/utf-8兼容问题);然后实现BERT微调,加入早停机制与混淆矩阵可视化,验证准确率达93.8%;接着用DistilBERT完成模型蒸馏,在仅损失0.6%准确率的前提下,将推理速度提升2.7倍。

2025-08-18 11:30:24 607 10

原创 YOLOv8/v9零售商品检测新手实战:从摄像头实时检测到移动端部署(附完整代码)

摘要:本文是针对新手的YOLOv8/v9零售商品检测实战指南,基于真实技术原理和公开数据集(SKU-110K)构建可操作方案,避免大模型幻觉。内容涵盖5分钟环境搭建、USB摄像头实时检测、商品堆叠遮挡解决(SAHI切片推理)、零样本模型精调、移动端部署全流程,每个步骤均提供完整可运行代码及调试建议。新手可通过本文快速搭建基础检测系统,进阶读者能学习模型优化与部署技巧。虚拟测试显示:基础模型对单件商品识别率达85%,SAHI切片优化后堆叠商品识别率提升至89%,Android手机部署推理速度低至28ms。

2025-08-18 09:31:30 647 6

原创 【YOLOv11工业级实战】10. YOLOv11医疗影像进阶:病理切片癌细胞识别(千兆像素处理|云平台部署)

摘要:本文针对病理切片癌细胞识别中的千兆像素处理、细胞重叠、染色差异三大难题,提出基于YOLOv11的解决方案。参考WHO癌症分类标准,采用Camelyon16乳腺癌病理切片数据集,通过染色归一化处理增强数据一致性。创新设计分块检测+全局融合策略与上下文感知注意力机制,实现10μm癌细胞97.8%的检出率。开发符合HIPAA规范的医疗云平台,采用分布式处理框架,5GB切片处理时间达35分钟。文中提供完整的切片处理、模型训练及云平台部署代码,适合医院病理科实现智能化辅助诊断,可有效提升诊断效率与准确性。

2025-08-17 15:58:39 362 16

原创 【YOLOv11工业级实战】09. YOLOv11工业质检实战:电子元件缺陷检测(微米级精度|显微图像处理)

摘要:本文针对电子元件微米级缺陷检测难题,提出基于YOLOv11的高精度检测方案。参考IPC-A-610航空级标准,采用PCB-Defect显微图像库,通过3D打印模拟技术生成20μm级微缺陷样本。创新设计亚像素特征提取网络与多尺度融合策略,实现20μm缺陷96.7%的检出率,误报率低至1.1%。开发工业显微镜集成系统,结合Olympus DSX1000显微镜与Thorlabs运动平台,构建自动化检测流程。文中提供完整的缺陷模拟、模型训练及工业集成代码,支持电子制造业实现高精度、高效率的质检自动化。

2025-08-17 15:02:35 207 4

原创 【YOLOv11工业级实战】08. YOLOv11安防实战:危险物品检测(X光安检机图像解析|嵌入式系统部署)

摘要:本文针对X光安检场景中物品重叠、材质干扰、形状扭曲等难题,提出基于YOLOv11的危险物品检测方案。参考公安部《GB 15208-2018》标准,采用SIXray X光安检数据集,通过物理模型生成多物品堆叠图像增强数据真实性。创新设计跨层级特征融合架构与材质感知注意力机制(CMA),解决重叠物品检测问题,重叠物品检出率达91%。开发嵌入式部署方案,在Jetson AGX Orin上实现18ms延迟、85%实际场景检出率。文中提供完整的数据增强、模型训练及嵌入式部署代码,适合智慧安防项目落地。

2025-08-17 14:02:34 677 5

原创 【YOLOv11工业级实战】07. YOLOv11交通实战:车牌识别与违规检测(强光/雨雾优化|边缘计算落地)

摘要:本文针对交通场景中车牌识别面临的强光反射、雨雾干扰、车牌变形等难题,提出基于YOLOv11的解决方案。参考公安部GA/T 497-2016标准,采用CCPD车牌数据集,通过极端天气模拟(雨雾、强光)增强数据真实性。创新融合LPRNet轻量化识别网络与透视矫正技术,解决复杂环境下的车牌识别问题。实验显示,方案在雨雾天车牌识别率达88.7%,晴天达98.5%。同时提供边缘计算部署方案,基于旭日X3派与Jetson Orin NX实现本地化实时检测,结合5G传输架构,支持违规行为快速上报。

2025-08-17 10:50:56 648 6

原创 【YOLOv11工业级实战】06. YOLOv11农业实战:病虫害叶片识别(微信小程序+云平台实时监测|轻量化部署)

摘要:本文针对农业病虫害识别中田间光照不均、叶片遮挡、病虫害形态多样等难题,提出基于YOLOv11的轻量化解决方案。参考中国农科院植保所病虫害图谱标准(NY/T 2949-2016),采用PlantVillage叶片病害数据集,通过模拟田间自然干扰(阴影、水滴、泥土附着)增强数据真实性。创新设计MobileNetV4-Hybrid融合模型,结合知识蒸馏技术,将模型体积压缩至2.8MB,在骁龙778G设备上实现28ms推理延迟、25FPS帧率。开发微信小程序+云平台监测系统,支持田间实时拍照识别。

2025-08-17 09:19:04 460 18

原创 【YOLOv11工业级实战】05. YOLOv11医疗影像实战:血细胞检测与计数(98.5% F1-score|附Web可视化系统)

摘要:本文针对血细胞检测中存在的细胞重叠、形态多变和染色差异三大难题,提出基于YOLOv11的高精度解决方案。参考北京协和医院血常规检验标准(WS/T 405-2018),使用BCCD血细胞数据集构建训练样本,通过染色差异增强技术模拟临床真实场景。创新采用点标注结合计数的标注方式,引入自适应尺度训练聚焦细胞密集区域,结合分水岭后处理算法实现重叠细胞分离。实验结果显示,该方案在BCCD测试集上F1-score达98.5%,重叠细胞分离准确率达94%。

2025-08-16 08:18:34 1006 8

原创 【YOLOv11工业级实战】04. YOLOv11钢铁裂纹检测:0.3mm级微裂纹识别方案(高粉尘环境鲁棒训练|附Jetson部署)

摘要:本文针对钢铁工业中微裂纹检测面临的粉尘干扰、微小目标漏检和金属反光等难题,提出基于YOLOv11的高精度检测方案。参考宝钢集团热轧钢板质检标准,构建包含NEU-DET公开数据集及粉尘模拟样本的训练集,通过动态蛇形卷积增强弯曲裂纹特征提取,新增P2小目标检测层提升0.3mm级微裂纹识别能力。在高粉尘环境下,模型检出率达91%,[email protected]达0.937。同时提供Jetson AGX Orin工业级部署方案,基于TensorRT加速实现8ms推理延迟,并通过温度保护策略保障高温环境稳定性。

2025-08-16 08:18:12 642 17

原创 【YOLOv11工业级实战】03. YOLOv11安全帽识别实战:99.2%准确率工地复杂遮挡解决方案(附手机端部署)

摘要:本文针对建筑工地安全帽佩戴检测中的遮挡、小目标、光照突变等痛点,提出基于YOLOv11的高精度解决方案。参考中建五局智能工地验收标准,构建包含1万+样本的数据集,通过模拟脚手架、吊臂遮挡增强数据真实性;创新引入关键点辅助标注,结合SimAM注意力机制与OKS损失函数,将遮挡场景下的识别准确率提升至99.2%。同时提供完整的安卓手机端部署方案,基于NCNN框架实现30fps实时检测,实测在骁龙865设备上延迟仅18ms。文中包含数据集制作、模型训练、参数调优及移动端部署的全流程代码与避坑指南。

2025-08-16 08:17:31 871 12

原创 【YOLOv11工业级实战】02. YOLOv11电池表面划痕识别(98.7% mAP落地方案|附调参逻辑+完整代码)

摘要:本文聚焦工业场景中电池表面划痕的自动检测需求,基于YOLOv11算法实现高准确率检测方案。首先解析电池划痕检测的工业标准(参考宁德时代专利),构建包含真实缺陷与模拟反光干扰的数据集;接着详细讲解模型训练全流程,通过SPD-Conv替换、HSV增强等优化手段,将[email protected]提升至98.7%;随后介绍TensorRT INT8量化部署方案,在Jetson Xavier NX上实现22ms/帧的实时检测。文中包含完整代码、数据集制作规范、调参逻辑及工业场景避坑指南,适合新手入门与工程人员参考。

2025-08-16 08:16:39 590 20

原创 【YOLOv11工业级实战】01. YOLOv11猫狗实时检测实战:从零搭建到模型部署(附避坑指南+完整代码)

摘要:本文聚焦新手友好型YOLOv11猫狗实时检测实操案例,从环境配置、数据集制作、模型训练、优化到部署,提供全流程可复现方案。通过Anaconda+CUDA+PyTorch搭建环境,详解2小时快速标注数据集的方法,结合参数调优逻辑实现1小时基础训练,并引入ECA注意力模块等工业级优化技巧,将[email protected]从0.7提升至0.85+。部署阶段采用TensorRT加速,在GTX 1660 Ti上实现9ms/帧的实时检测。文中包含完整代码、执行结果展示、避坑指南及真实测试数据,适合新手入门与进阶读者参考。

2025-08-16 08:15:55 956 35

计算机视觉之:OpenCV项目实战 - C++&amp;amp;dlib实时人脸识别应用开发(源码+资料)【OpenCV + C++】

本资源提供了一套基于OpenCV和Dlib库的完整C++源码,专注于实时人脸识别应用开发。该项目结合了OpenCV的图像处理能力和Dlib的人脸识别技术,实现了多种人脸检测与识别功能,适用于各种实时监控和身份验证场景。 关键功能包括: 人脸检测与标记:从图片中自动检测并标记所有人脸,帮助快速识别和定位。 人脸特征点标记:识别并标记图片中所有人脸的68个特征点,提供详细的人脸特征分析。 特征点绘制与编号:在图片中检测人脸并绘制其特征,同时对68个特征点进行编号,便于进一步处理和分析。 目标人物识别: 从指定lib目录中的图片中识别目标人物,实现特定人物的快速识别。 从视频流中识别出lib目录下的目标人物,适用于动态监控场景。 从摄像监控中实时识别目标人物,实现实时安全监控和身份验证。 非特定目标识别:支持识别非特定目标,增强系统的适应性和识别能力。 项目优势: 高效的C++实现:利用C++与OpenCV、Dlib的结合,实现高效、快速的人脸识别处理。 实时应用支持:支持从静态图片到动态视频流的多种输入形式,满足实时应用需求。

2025-03-03

计算机视觉之:OpenCV项目实战 - 人脸识别(C++源码+资料)c++ &amp; OpenCV,可实现图片/视频中的人脸识别功能

人脸识别技术在现代计算机视觉领域中有着广泛的应用。利用OpenCV进行人脸识别,可以实现从图片、视频文件以及实时摄像头视频流中识别出人脸的功能。本项目将提供一个完整的C++代码示例,展示如何使用OpenCV进行人脸检测和识别。 本项目旨在通过C++和OpenCV库实现人脸识别功能。项目包含从静态图片、视频文件以及摄像头视频流中检测并识别人脸的代码示例。通过学习本项目,读者将掌握OpenCV在C++中的基本用法以及人脸检测和识别的实现方法。 主要功能: 图片人脸识别:从静态图片中检测并识别人脸。 视频文件人脸识别:从视频文件中检测并识别人脸。 摄像头视频流人脸识别:从实时摄像头视频流中检测并识别人脸。 通过本项目,读者可以学习如何使用OpenCV和C++实现人脸识别功能。项目展示了从图片、视频文件以及实时摄像头视频流中检测并识别人脸的完整过程。未来可以进一步优化算法,提高识别的准确性和实时性,并扩展到更多的应用场景中。

2025-03-02

机器视觉之:Halcon函数手册(全部函数解析及说明,超实用)

Halcon 函数手册是学习和使用 Halcon 机器视觉软件不可或缺的重要资源,它全面且系统地记录了 Halcon 中丰富多样的函数信息,为开发者提供了强有力的支持。 手册中对每个函数都进行了详细介绍,包括函数的功能、语法结构、参数说明等关键内容。对于功能描述,会清晰阐述该函数在机器视觉应用场景下的具体用途,比如某个函数是用于图像滤波以去除噪声,还是用于边缘检测来提取图像中的关键轮廓等。在语法结构方面,明确给出函数的调用格式,让开发者能够准确无误地在代码中使用。参数说明部分则会对每个参数的含义、取值范围以及对函数执行结果的影响进行细致讲解,帮助开发者合理设置参数以达到预期效果。 通过查阅 Halcon 函数手册,开发者可以快速定位到所需的函数。无论是进行图像预处理、特征提取、目标识别,还是进行更高级的三维测量等任务,都能在手册中找到对应的解决方案。同时,手册还会提供一些示例代码,这些代码具有很强的指导性和实用性,开发者可以参考示例代码进行快速开发,大大提高开发效率。 对于初学者来说,它是入门的良师益友,帮助他们快速熟悉 Halcon 的功能和使用方法;对有经验者也是好的参考工具。

2025-03-03

计算机视觉之:OpenCV项目实战 - C++基础人脸识别(源码+资料)【OpenCV + C++】

OpenCV是一个功能强大的计算机视觉库,它提供了多种工具和算法来处理图像和视频数据。在C++中,OpenCV可以用于实现基础的人脸识别功能,包括从摄像头、图片和视频中识别人脸,以及通过PCA(主成分分析)提取图像轮廓。以下是对本资源大体的介绍: 1. 从摄像头中识别人脸:通过使用OpenCV的Haar特征分类器,我们可以实时从摄像头捕获的视频流中检测人脸。这个过程涉及到将视频帧转换为灰度图像,然后使用预训练的Haar级联分类器来识别人脸区域。 2. 从视频中识别出所有人脸和人眼:在视频流中,除了检测人脸,我们还可以进一步识别人眼。这通常涉及到使用额外的Haar级联分类器来定位人眼区域,从而实现对人脸特征的更细致分析。 3. 从图片中检测出人脸:对于静态图片,OpenCV同样能够检测人脸。通过加载图片,转换为灰度图,然后应用Haar级联分类器,我们可以在图片中标记出人脸的位置。 4. PCA提取图像轮廓:PCA是一种统计方法,用于分析和解释数据中的模式。在图像处理中,PCA可以用来提取图像的主要轮廓特征,这对于人脸识别技术中的面部特征提取尤

2025-03-03

计算机视觉之:OpenCV项目实战 - 人脸关键点定位(源码+资料)【Python + OpenCV】

这是一份极具价值的资源。该源码基于Python与OpenCV构建,专注于人脸关键点定位这一重要的计算机视觉任务。它涵盖了从图像读取、人脸检测到精准定位人脸关键点(如眼睛、鼻子、嘴巴等部位的关键坐标)的完整流程。利用OpenCV强大的图像处理和计算机视觉算法,代码中展示了如何高效地提取人脸特征,并且通过合适的模型或算法准确地确定各个关键点的位置。代码结构清晰、注释详细,无论是计算机视觉领域的初学者想要深入了解人脸关键点定位的实现原理,还是有经验的开发者寻求在相关项目中进行优化和扩展,都能从这份源码中获得很大的帮助,在人脸识别、表情分析、美颜滤镜等众多应用场景中有着广泛的用途。

2025-03-02

计算机视觉之:OpenCV项目实战 - Opencv的DNN模块(源码+资料)【python + OpenCV】

当前资源是深入探索OpenCV中DNN(深度神经网络)模块的宝贵资料,专为希望在计算机视觉领域中运用深度学习技术的开发者设计。该资源详细介绍了DNN模块的基础原理和核心功能,指导用户如何加载和使用预训练模型,包括常见的分类模型和目标检测模型,如MobileNet、ResNet、YOLO和SSD等。 资源通过丰富的实例展示了如何利用OpenCV的DNN模块进行图像识别、目标检测和图像分割等任务。每个示例代码都经过精心设计,结构简洁,且配有详尽的注释,帮助用户理解每一步操作的目的和实现方式。除了基本的使用方法,资源还探讨了优化推理速度和提高模型精度的技巧,适合在实际应用中提升性能。 无论是刚接触计算机视觉的新手,还是希望深入掌握OpenCV DNN模块的老手,都能从中受益。通过学习该资源,开发者将能够在OpenCV框架下自信地应用DNN技术,开发出高性能、智能化的视觉应用程序。此资源在多个应用领域具有极大的潜力,包括自动驾驶、智能监控和增强现实等,为用户提供了在计算机视觉开发中强大的工具和实践指导。

2025-03-02

计算机视觉之:OpenCV项目实战 - 全景图像拼接(源码+资料)【Python + OpenCV】

这段源码基于Python和OpenCV库,详细展示了全景图像拼接的完整过程,是学习计算机视觉和图像处理的理想资源。首先,源码对输入图像进行预处理,包括图像读取和色彩空间转换,以便于后续的特征点提取。接下来,利用特征检测算法(如SIFT或ORB)提取关键特征点,并通过特征匹配技术找到图像之间的对应关系,确保拼接的准确性。 在找到匹配点后,源码计算图像之间的变换矩阵(通常是单应性矩阵),用于将图像对齐到同一视角。最后,通过图像融合技术,将处理后的图像无缝拼接成一幅完整的全景图。整个过程的源码结构清晰,并附有详尽的注释,便于初学者理解每个步骤的原理和实现细节。 这段代码不仅适合初学者用于学习图像拼接的基本原理,也为开发者在实际项目中进行优化提供了参考。全景图像拼接技术在多个领域有广泛的应用前景,包括虚拟现实、地理信息系统和摄影等,能够帮助用户创建更具沉浸感和信息量的视觉体验。通过研究和应用该源码,开发者可以进一步探索图像处理的高级技术和应用场景。

2025-03-02

计算机视觉之:OpenCV项目实战 - 答题卡识别判卷(源码+资料)【Python + OpenCV】

计算机视觉之:OpenCV项目实战 - 答题卡识别判卷(源码+资料)【Python + OpenCV】 本项目提供了一套完整的答题卡自动识别与评分系统解决方案,专为需要高效处理大量标准化测试答题卡的场景设计,如教育机构的考试评分和数据分析。通过利用Python与OpenCV的强大功能,该系统能够自动扫描和评分答题卡,极大地减少了人工判卷的工作量,同时显著提高了评分的准确性和效率。 项目详细展示了从图像采集、预处理到特征提取与分析的全过程。首先,通过高效的图像处理技术对答题卡进行预处理,包括去噪、透视变换和边缘检测等,确保答题卡图像的质量和标准化。接下来,系统识别并定位每个题目的填涂区域,通过分析填涂的深浅和位置来判定学生的答案。 该项目的源码结构清晰、逻辑严谨,附有详尽的注释,便于开发者理解每个步骤的实现原理。项目还提供了测试图片,方便用户进行实际操作和测试。对于计算机视觉初学者来说,这是一个理想的学习资源,帮助理解如何应用OpenCV进行图像识别和分析;而对于有经验的开发者,该项目提供了一个可扩展的答题卡识别算法实现,具有很高的参考价值。

2025-03-02

计算机视觉之:OpenCV项目实战 - 停车场车位识别源码(源码+资料)【Python + OpenCV】

当前资源里蕴藏着一套全面且实用的停车场车位识别解决方案的源码。该源码以Python和OpenCV为核心构建,涵盖了停车场车位识别的完整流程。从图像采集开始,无论是来自监控摄像头还是其他图像获取设备,都能进行有效的处理。在预处理阶段,包括图像的灰度化、滤波等操作,以提高图像质量,为后续的识别工作奠定基础。 然后,利用OpenCV强大的图像处理功能,如边缘检测、形态学变换等技术,精确地定位车位的边界和标识。再通过特征提取与匹配等方法,准确判断车位的占用状态(空闲或已占用)。代码结构清晰,易于理解,注释详尽,适合初学者快速入门学习OpenCV在停车场车位识别中的应用,也为有经验的开发者提供了一个可优化和扩展的良好范例,在智能交通、停车场管理等领域有着广泛的应用前景。 本资源适用于新手和有一定基础的开发人员,本源码也可做适当扩展,应用于其它适配的领域和实际场景。

2025-03-02

计算机视觉之:OpenCV项目实战 - 疲劳检测(源码+资料)【Python + OpenCV】

计算机视觉之:OpenCV项目实战 - 疲劳检测(源码+资料)【Python + OpenCV】 这个项目资源提供了一套完整且实用的疲劳检测解决方案,是基于功能强大的OpenCV库构建的,适用于各种需要实时监控和安全保障的场景,如驾驶员监控系统、工作场所安全监测等。源码涵盖了从图像采集、预处理,到特征提取与分析等多个关键环节的实现,充分展示了计算机视觉技术在疲劳检测中的应用。 项目利用先进的面部特征检测技术,重点监测眼睛、嘴巴等关键部位的状态。通过分析这些部位的变化,如眼睛的闭合频率、嘴巴的打哈欠动作等,判断个体是否处于疲劳状态。该过程涉及多种计算机视觉算法,包括人脸检测、特征点定位、状态分析等,确保检测的准确性和实时性。 源码结构清晰,逻辑合理,且每个步骤都附有详尽的注释,帮助用户理解每个功能模块的实现原理。对于OpenCV初学者来说,这是深入理解计算机视觉在实际项目中应用的绝佳起点;而对于有经验的开发者,该项目提供了一个高效的疲劳检测算法实现方案,具有很高的参考价值。 通过学习和应用该源码,用户将掌握如何在OpenCV环境下进行实时视频处理、面部特征提取和状态分析。

2025-03-02

计算机视觉之:OpenCV项目实战:摄像头根据样本识别目标人脸(源码+资料)【OpenCV + C++】

此资源提供了一套基于OpenCV和C++的完整源码,专注于通过摄像头实时识别目标人脸。项目利用OpenCV强大的图像处理能力和人脸识别算法,实现对摄像头捕获的图像进行实时分析,并根据预先提供的样本识别特定人脸。这一功能在安全监控、身份验证和人机交互等领域具有广泛应用。 项目特色: 实时人脸识别:通过摄像头捕获实时视频流,并使用OpenCV的高效人脸识别算法进行处理,快速识别出目标人脸。 样本驱动的识别:用户可以提供样本人脸图像,系统根据这些样本进行特征提取和模型训练,从而实现对特定人脸的精准识别。 高效的C++实现:使用C++语言实现,充分利用OpenCV库的高性能特性,确保在实时应用中的快速响应和高效处理。 可扩展性:源码结构清晰,易于理解和修改,开发者可以根据自己的需求进行功能扩展和优化。 适合人群: 从事计算机视觉和图像处理的开发者和研究人员。 对实时人脸识别和监控系统有需求的工程师。 希望在自己的项目中集成人脸识别功能的开发团队。 通过这份资源,用户将能学习如何在C++环境中利用OpenCV进行高效的人脸识应用开发。

2025-03-03

计算机视觉之:OpenCV项目实战 - 目标追踪(源码+资料)【基于Python + OpenCV】

这是一个极具价值的资源。在这个资源里,你将深入探索基于Python与OpenCV库构建的目标追踪项目的完整实现过程。它涵盖了从基础的目标检测到精准的目标追踪各个环节,利用OpenCV强大的图像处理和计算机视觉功能,结合Python简洁高效的编程特性。无论是使用传统的目标追踪算法,如均值漂移(MeanShift)、卡尔曼滤波(Kalman Filter)等,还是基于深度学习的目标追踪方法,都有详细的代码示例和清晰的逻辑讲解。 代码结构设计合理,注释丰富,易于理解,这对于想要深入学习计算机视觉中目标追踪技术的初学者来说是一个很好的入门引导,同时也为有经验的开发者提供了可借鉴的项目范例,在智能监控、自动驾驶、人机交互等众多领域都有着广泛的应用前景。 适用于初学者及有一定基础的开发者。

2025-03-02

计算机视觉之:OpenCV项目实战 - 信用卡数字识别源码(Python + OpenCV)

OpenCV计算机视觉项目实战 - 信用卡数字识别源码(基于Python + OpenCV) 这是一个极具价值的项目源码,专注于信用卡数字识别这一实用领域,采用Python与OpenCV相结合的强大组合。该项目详尽展示了从信用卡图像的读取、预处理,到精准定位数字区域,再到准确识别数字的完整流程,涵盖了计算机视觉和图像处理的核心技术。 首先,源码展示了如何读取信用卡图像,并进行预处理操作,包括灰度转换、降噪处理、增强对比度等,以提高图像质量。接着,利用OpenCV的图像处理算法(如边缘检测、轮廓检测等)精确定位信用卡上的数字区域,并进行裁剪。 在数字识别阶段,项目结合了机器学习相关技术,通过训练预先设计的模型或使用预训练模型,对提取的数字区域进行识别。整个过程逻辑清晰、结构合理,代码中包含丰富的注释,详细解释了每一步操作的原理和实现方式。 该源码适合不同水平的开发者学习和借鉴。无论是初学者希望了解OpenCV在数字识别方面的应用,还是有经验的开发者希望在类似的图像识别项目中获取灵感,这个源码都将是一个非常好的资源。它不仅能帮助你快速上手,还能深入探索信用卡数字识别背后的计算机视觉

2025-03-02

计算机视觉之:OpenCV项目实战 - 人脸关键点检测(源码+资料)【OpenCV4.0 + Python】

人脸关键点检测是计算机视觉领域中的一个重要任务,广泛应用于人脸识别、表情分析、面部特征跟踪等领域。在这个项目中,我们将使用OpenCV和dlib库来实现人脸关键点检测。 主要方法: 1. dlib.get_frontal_face_detector( ) 获取人脸检测器 2. dlib.shape_predictor( ) 预测人脸关键点 该项目利用OpenCV和dlib库提供的功能,首先检测人脸的位置,然后预测人脸上的关键点位置。这些关键点通常包括面部的轮廓、眼睛、鼻子、嘴巴等特征点。通过这些关键点信息,我们可以进一步进行面部表情分析、姿态估计等应用。 主要步骤: 读取图像:使用OpenCV读取输入图像。 检测人脸:使用dlib检测器识别图像中的人脸。 预测关键点:对每个检测到的人脸,使用预测器识别关键点。 绘制结果:在图像上绘制人脸边界框和关键点。 扩展应用: 表情识别:通过分析关键点位置和变化,识别面部表情。 姿态估计:利用关键点信息估计头部姿态。 动画制作:将关键点应用于面部动画和增强现实。

2025-03-03

计算机视觉之:OpenCV项目实战 - 人脸检测基于dlib(源码+资料)【OpenCV4.0 + Python】

这份资源包含了基于OpenCV4.0和Dlib的计算机视觉项目源码,专注于人脸检测应用。Dlib是一个强大的深度学习开源工具,最初基于C++开发,同时也提供了Python开发接口,极大地方便了开发者在不同编程环境下的使用和集成。 主要内容包括: Dlib的优势:Dlib以其对人脸特征提取的卓越支持而闻名,提供了多种训练好的人脸特征提取模型,开发者可以直接使用这些模型进行高效的人脸识别和检测。这使得Dlib非常适合用于开发各种人脸识别项目。 HOG(方向梯度直方图): 特征描述子:HOG是一种强大的特征描述子,广泛用于从图像数据中提取特征,尤其在物体检测任务中表现出色。 作用:特征描述子的主要作用在于将图像进行简化表示,仅保留最重要的信息,从而提高检测效率和准确性。 项目特色: 源码提供:完整的项目源码使得开发者可以直接查看和理解实现细节,同时也可以根据自身需求进行定制和扩展。 多语言支持:通过Dlib的C++和Python接口,开发者可以在不同的编程环境中实现和测试人脸检测算法。 丰富的文档和示例。

2025-03-03

计算机视觉之:OpenCV项目实战 - 人脸跟踪与目标跟踪(源码+资料)【OpenCV4.0 + Python】

在计算机视觉领域,人脸跟踪和目标跟踪是两个重要的应用场景。这些技术可以用于监控系统、交互式应用、视频分析等多个领域。本项目将使用OpenCV和dlib库实现人脸和目标的检测与跟踪。 1. 基于dlib库 —— 检测人脸、跟踪人脸; 2. 基于dlib库 —— 选定目标物体,跟踪目标。 本项目旨在通过dlib库的功能,实现对视频流中人脸和目标物体的检测和跟踪。dlib库提供了高效的人脸检测器和目标跟踪器,可以在实时应用中发挥重要作用。 主要功能: 人脸检测与跟踪:实时检测视频流中的人脸,并在检测后进行人脸跟踪。 目标选择与跟踪:允许用户手动选择目标物体,并在视频流中跟踪该目标。 扩展应用 多目标跟踪:支持同时跟踪多个目标,提高系统的实用性。 运动预测:结合运动预测算法,提升跟踪的稳定性和准确性。 应用场景拓展:应用于安防监控、智能家居、交互式娱乐等领域。 通过本项目,我们展示了如何使用OpenCV和dlib库实现人脸和目标的检测与跟踪。该技术在实时性和准确性上都有良好的表现,并且可以根据具体需求进行扩展和优化。

2025-03-03

计算机视觉之:OpenCV项目实战 - 文档扫描OCR识别(源码+资料)【基于Python + OpenCV】

在本资源中,你将获取到一个非常实用且功能强大的项目源码。它基于Python与OpenCV的组合,为文档扫描OCR识别提供了一套完整的解决方案。首先,利用OpenCV的图像处理功能对文档图像进行预处理,包括图像的矫正、去噪、增强对比度等操作,从而提高图像的质量以便于后续识别。然后,通过一系列的形态学操作和边缘检测算法准确地提取文档的有效区域,为OCR识别做好准备。在这个过程中,代码巧妙地运用了OpenCV的各种函数和特性,展现了高效的图像处理技巧。接着,结合OCR技术对提取的文档区域进行文字识别,将图像中的文字转化为可编辑的文本信息。整个源码结构清晰,代码注释详细,无论是对于想要深入学习OpenCV在文档处理方面应用的初学者,还是致力于优化和扩展文档扫描OCR识别功能的开发者来说,都是一个极具价值的资源,在数字化办公、文档管理等领域有着广泛的应用潜力。

2025-03-02

计算机视觉之:OpenCV项目实战 - 人脸识别(源码+资料)【OpenCV4.0 + python】

人脸识别技术在身份验证、安防监控、社交媒体等领域有着广泛的应用。本项目将利用ResNet-34网络和dlib库实现基于图片和摄像头的人脸识别。这一技术通过深度学习模型生成的128D面部描述子来表征和区分不同个体。 1. 网络ResNet-34最终输出一个128D的描述子; 2. 网络ResNet-34训练过程中的核心步骤:Triplets(三元组): (1)每个triplet在训练的时候会读入3张图片(2张是同一人,1张是另一人),分别计算出各自人脸的128D描述子; (2)不断调整网络模型权重,使得同一人的向量更近,不同人之间的向量更远。 主要功能 人脸识别:通过ResNet-34生成128D描述子,实现对图片和摄像头视频流中的人脸识别。 Triplet Loss优化:利用三元组损失函数训练网络模型,提高识别准确性。 扩展应用: 身份验证:应用于门禁系统,验证用户身份。 社交媒体:自动标记和识别照片中的人物。 安防监控:实时监控视频流中的可疑人物。

2025-03-03

计算机视觉之:OpenCV项目实战 - 人脸检测基于Haar级联(源码+资料)【OpenCV4.0 + Python】

OpenCV项目实战 - 人脸检测基于Haar级联(源码+资料) 目标:确定图片中人脸的位置,并画出矩形框。 1. 核心原理 (1)使用Haar-like特征做检测 (2)Integral Image : 积分图加速特征计算 (3)AdaBoost : 选择关键特征,进行人脸和非人脸分类 (4)Cascade : 级联,弱分类器成为强分类器 2. Haar cascade 它提供了四个级联分类器(针对人脸的正面): (1)haarcascade_frontalface_alt.xml (FA1):  22 stages and 20 x 20 haar features (2)haarcascade_frontalface_alt2.xml (FA2):  20 stages and 20 x 20 haar features (3)haarcascade_frontalface_alt_tree.xml (FAT):  47 stages and 20 x 20 haar features (4)haarcascade_frontalface_default.xml

2025-03-03

深度学习(英文PPT教程)

深度学习(英文PPT教程) 深度学习(Deep Learning)是机器学习的一个子领域,它通过模仿人脑的神经网络结构,使用多层非线性变换对数据进行抽象和特征学习。本教程由浅入深,从基本概念开始逐渐深入讲解深度学习核心内容。适用于对人工智能感兴趣的初学者以及有一定人工智能应用基础的开发者和研究者。 主要内容包括: 1. 深度学习概述:深度学习的基本理念是通过构建多层的神经网络,使机器能够自动学习数据的复杂表示和抽象层次。 深度学习的发展得益于大数据、强大的计算能力和先进的算法,它在多个领域展现出强大的应用潜力 2. 多种神经网络介绍: 包括前馈神经网络、卷积神经网络、循环神经网络、长短时记忆网络、生成对抗网络等。 此外在介绍中还涉及深度学些的一些典型应用案例,帮助读者理解并掌握深度学习核心要点。

2024-12-18

【自动化领域】倍福(BECKHOFF)运动控制产品及技术详解:涵盖伺服驱动、EtherCAT总线及TwinCAT软件的综合解决方案

内容概要:本文档详细介绍了倍福(Beckhoff)运动控制技术及其产品。首先概述了倍福的运动控制器、伺服驱动器、伺服电机等硬件设备,强调了其在现场总线及I/O方面的优势。接着深入讲解了基于EtherCAT系统的高动态定位任务驱动系统,以及支持第三方伺服电机的能力。文档还展示了倍福的调试工具TcDriveManager,并介绍了适用于不同行业的定制化电机(如食品级涂装电机)。此外,重点描述了TwinCAT软件平台,涵盖PLC、NC、PTP、CNC等功能模块,强调其实时性和高度集成特性。最后列举了多个应用场景,如金属焊接、轿车车门焊接、立体仓库、机器人控制等。 适用人群:从事自动化工程、机电一体化、工业控制等领域,尤其是对运动控制有需求的技术人员和工程师。 使用场景及目标:①了解倍福运动控制产品的特性和应用场景;②掌握TwinCAT平台在运动控制中的应用,包括但不限于点对点定位、电子齿轮同步、凸轮同步、飞剪、收放卷等功能;③学习如何利用倍福提供的硬件和软件解决方案实现高效精准的运动控制。 其他说明:文档提供了丰富的技术细节和实际案例,适合希望深入了解倍福运动控制技术和寻求具体项目实施指导的专业人士阅读。同时,对于希望优化现有生产线或开发新应用的用户来说,倍福的产品和技术能够提供强大的支持。

2025-08-19

【工业自动化】倍福(BECKHOFF)基于IEC 61131-3标准的TwinCAT PLC编程指南:控制系统软件设计与应用

内容概要:本文档是关于TwinCAT编程指南,重点介绍了IEC 61131-3编程标准及其在工业自动化控制系统中的应用。文档详细阐述了IEC 61131-3的五个组成部分,包括通用信息、装置要求与测试、编程语言、用户导则和通信服务规范。文中强调了IEC 61131-3的五大编程语言(IL、ST、LD、FBD、SFC),并解释了这些语言的特点和应用场景。此外,文档还深入探讨了TwinCAT系统的架构,包括配置、资源、任务、程序、功能块和函数的概念,以及变量、数据类型、函数和功能块的具体使用方法。最后,文档还介绍了PLCopen组织及其在推动IEC 61131-3标准方面的作用。 适合人群:具备一定PLC编程基础,尤其是从事工业自动化控制系统的工程师和技术人员。 使用场景及目标:①帮助工程师理解IEC 61131-3标准的核心内容和编程语言特点;②指导工程师如何在TwinCAT系统中进行高效编程,确保代码的安全性和质量;③为工程师提供详细的编程实践指导,包括变量管理、数据类型定义、函数和功能块的使用等。 其他说明:文档不仅涵盖了理论知识,还提供了大量实际编程示例,帮助读者更好地理解和应用IEC 61131-3标准。此外,文档还介绍了PLCopen组织的工作,进一步强调了该标准的广泛适用性和重要性。

2025-08-19

【C# + HALCON机器视觉实战】涡轮叶片三维型面检测系统:基于C# + HALCON的高精度解决方案

内容概要:本文详细介绍了一种基于C#.NET Core 6与HALCON 24.11的涡轮叶片三维型面检测系统。该系统通过激光线扫描(每秒2000线)获取百万级点云,经MLS滤波降噪和快速采样优化数据,采用ICP算法实现点云与CAD模型配准(配准误差≤0.005mm),并通过距离计算生成偏差色谱图(±0.2mm公差可视化)。系统检测效率达5分钟/件,全型面覆盖率100%,漏检率从12%降至0.3%,满足航空航天AS9100标准。文中提供了完整的硬件配置、算法代码及抗干扰方案,为高精度复杂型面检测提供了工业化解决方案。 适合人群:从事航空发动机制造及相关领域的工程师和技术人员,特别是对涡轮叶片检测有较高要求的专业人士。 使用场景及目标:①适用于需要高精度、高效率涡轮叶片检测的企业,如航空发动机制造厂;②实现涡轮叶片全型面检测,提高检测覆盖率和准确性;③降低漏检率,提升产品质量和装机合格率;④通过自动化检测流程,减少人工干预,提高生产效率。 其他说明:本文不仅介绍了系统的硬件架构和核心算法,还详细描述了系统的性能优化措施、抗干扰设计以及实战应用案例。此外,文章还对未来的技术发展方向进行了展望,包括多传感器融合、深度学习应用、自适应检测等,旨在为涡轮叶片检测技术的发展提供参考。

2025-08-14

【工业视觉与机器视觉】基于C# + HALCON的新能源电池盖板密封胶检测系统开发:3D线扫+AI缺陷识别技术解析

内容概要:本文详细介绍了基于C#.NET Core 6与HALCON 24.11开发的新能源电池盖板全自动密封胶检测系统。该系统针对电池密封胶断胶/溢胶、胶路宽度一致性(±0.1mm公差)、微小气泡/杂质(φ≤0.2mm)等行业痛点,提出“蓝色激光线扫-3D点云重建-多特征融合检测”的创新技术路径。通过构建高精度3D点云模型(0.02mm分辨率),结合拓扑结构分析、亚像素边缘测量、深度学习缺陷识别等核心算法,实现了密封胶质量的全方位检测。系统在实际应用中表现出卓越性能:断胶检测准确率达99.8%(最小检测尺寸0.5mm),胶宽测量精度±0.05mm,气泡检测准确率97.3%(φ0.15mm)。本文涵盖系统架构设计、核心算法实现、工业现场部署优化等完整技术链路,并提供可直接复用的C#与HALCON代码实现。 适合人群:具备一定编程基础,特别是熟悉C#和HALCON的开发人员,以及从事新能源电池制造和质量检测的技术人员。 使用场景及目标:①适用于新能源电池生产线中的密封胶质量检测;②帮助工程师理解并掌握3D线扫、点云重建、深度学习等先进技术的应用;③为企业提供高效的密封胶检测解决方案,提升产品质量和生产效率。 其他说明:本文不仅提供了详细的理论和技术实现,还涵盖了实际应用案例和常见问题的优化方案,旨在为相关领域的技术人员提供全面的参考。此外,文中提到的代码和配置参数可以直接应用于实际项目中,进一步加速开发和部署过程。

2025-08-14

工业实战C#+HALCON 机器视觉完整项目:印刷品套色检测系统(含源码 + 配置 + 测试数据)更多权益欢迎订阅优质专栏《机器视觉:C# + HALCON》

本资源为工业级机器视觉完整解决方案,基于 C# 与 HALCON 深度集成,针对印刷行业套色精度检测难题,提供从原理剖析、系统开发到实战部署的全流程技术资料。适合机器视觉工程师、工业自动化开发者及相关专业学生学习参考。 一、核心技术与系统价值 高精度检测方案 采用 HALCON 经典算子create_scaled_shape_model构建可缩放模板,结合亚像素边缘提取技术,实现 ±0.05mm 级检测精度,满足高速印刷生产线实时检测需求。系统通过 OPC UA 协议与印刷机实时通信,动态调整辊筒压力,形成 “检测 - 控制” 闭环,显著提升印刷品质量稳定性。 工业级架构设计 硬件层:集成 Basler 工业相机、LED 同轴光源、西门子 PLC 等设备,提供详细硬件选型与安装指南。 软件层:基于 C# 开发人机界面,结合 HALCON 实现图像处理逻辑,支持 ROI 区域限制、金字塔层数优化、GPU 加速等性能优化策略,单帧处理速度<100ms。 跨平台集成:支持与 ROS、MES 系统对接,适配工业物联网场景,实现数据实时同步与生产流程协同。 二、资源内容清单 全流程开发文档 技术原理:详细解析缩放形状匹配原理、套色偏移检测逻辑及 HALCON 算子参数调优(如NumLevels、ScaleMin/Max对匹配速度与精度的影响)。 系统实现:涵盖 C# 代码框架、HALCON 模板创建、图像预处理(高斯滤波、直方图均衡化)、OPC UA 通信协议封装等核心模块实现细节。 优化策略:提供 ROI 区域限定、多线程并行处理、GPU 加速等优化方案,附完整代码片段与参数配置示例。 实战配套资源 源码与配置:包含完整 C# 项目源码、HALCON 模板文件、OPC UA 客户端配置文件(.xml)、NLog 日志配置等。

2025-05-15

工业视觉基于C#与HALCON 24.11的工业级OCR字符识别全流程实战指南:药品包装与轮胎DOT码识别系统设计

内容概要:本文详细介绍基于C#(VS2022+.NET Core)与HALCON 24.11实现工业级OCR字符识别的完整技术方案。文章从OCR技术原理和HALCON核心算子解析入手,系统阐述开发环境配置、项目实战流程,涵盖图像预处理、文本定位、字符识别、结果验证及数据上报全流程。通过药品包装生产日期识别和轮胎DOT码环形识别两个典型工业场景,提供完整可运行代码示例,并深入探讨性能优化策略和错误处理机制。最终,该方案实现了识别准确率达99.2%以上的工业级OCR系统,为制造业智能化升级提供技术支撑。 适合人群:具备一定编程基础,尤其是熟悉C#和机器视觉技术的研发人员,以及从事工业自动化和智能制造领域的工程师。 使用场景及目标:①适用于工业制造场景下的字符识别任务,如药品包装生产日期识别、轮胎DOT码识别等;②通过完整的技术方案和代码示例,帮助开发者快速搭建高精度、高可靠性的OCR系统;③提供详细的性能优化策略,包括多线程处理、GPU加速、ROI局部处理等,确保系统在实际生产环境中高效运行;④介绍错误处理机制和容错重试机制,保障系统的稳定性。 其他说明:本文不仅提供完整的项目结构设计和代码组织方式,还探讨了扩展方向和前沿技术,如深度学习OCR的集成与优化、3D OCR技术应用和动态训练系统的开发。此外,附带的完整代码示例和优化方案使得开发者可以直接应用于实际项目中,快速实现工业级OCR系统的部署和应用。

2025-08-13

【工业视觉测量】基于C#与HALCON 24.11的高精度工业视觉测量拟合系统:从边缘提取到3D精度验证全流程设计与应用

内容概要:本文系统介绍了基于C#(VS2022+.NET Core)与HALCON 24.11的工业视觉测量拟合技术,涵盖边缘提取、几何拟合、精度优化及工业部署全流程。文中详细解析了亚像素边缘提取、Tukey抗噪算法、SVD平面拟合等核心技术,并提供了汽车零件孔径测量、PCB焊点共面性检测等典型应用场景的完整代码示例。通过GPU加速、EtherCAT同步等优化策略,实现了±0.01mm级测量精度,满足ISO 1101标准。此外,文章还探讨了深度学习、量子启发式算法等前沿技术的应用前景。 适合人群:具备一定编程基础,尤其是熟悉C#和HALCON的工程师或研究人员,以及从事工业视觉测量与自动化检测领域的技术人员。 使用场景及目标:①学习如何使用C#和HALCON实现高精度工业视觉测量系统的开发;②掌握边缘提取、抗差拟合、3D点云处理等核心技术的具体实现方法;③了解工业部署中的关键技术,如GPU加速、EtherCAT同步控制、实时数据看板等;④探索基于深度学习和量子计算的前沿技术在工业视觉中的应用。 其他说明:本文不仅提供了详细的理论分析和技术实现,还附有完整的代码示例和实验数据,帮助读者更好地理解和实践。同时,文中提到的硬件选型、校准方法、精度验证等内容,为实际项目实施提供了重要参考。文章最后还给出了未来的技术演进方向和开发者行动建议,如量子-经典混合计算、自监督学习等,以及参与HALCON官方认证和开源社区的建议。

2025-08-13

人工智能&amp;amp;深度学习:LSTM 文本分类实战 - 基于 THUCNews 数据集的 Python 源码资源(源码+数据集+说明)

此资源聚焦人工智能与深度学习领域的 LSTM 文本分类实战,提供一套完整的 Python 源码及相关数据,助力学习者深入掌握文本分类技术。 “models” 文件夹存放用于文本分类的模型定义代码,为实现 LSTM 及其他可能的模型架构提供基础;“THUCNews” 文件夹包含了重要的数据集,该数据集作为文本分类任务的数据来源,涵盖丰富的文本样本,可用于训练和测试模型。 核心 Python 源文件功能明确。“run.py” 负责整体流程的调度,通过命令行参数接收模型选择、嵌入方式等配置信息,然后加载数据集、构建迭代器,并初始化模型,最终启动训练过程,在训练过程中还会记录相关信息,方便后续分析。“train_eval.py” 专注于训练和评估环节,包含模型训练的核心逻辑以及在验证集和测试集上的评估代码,确保模型性能的可靠度量。“utils.py” 和 “utils_fasttext.py” 则提供了实用工具函数,如数据集构建、迭代器生成、时间计算等功能,辅助整个文本分类任务的实现,其中 “utils_fasttext.py” 针对 FastText 模型相关操作进行了优化。

2025-03-06

大数据分析&amp;amp;人工智能教程(Python) - Vue+Django实现二手车网站实战(含源码及Python web开发学习思维导图)

大数据分析&人工智能教程(Python) - Vue+Django实现二手车网站实战(含源码及Python web开发学习思维导图) 本资源提供了一个实战教程,旨在帮助开发者使用Vue和Django构建一个功能完善的二手车网站。该项目结合了现代前端技术与强大的后端框架,适合希望深入学习全栈开发的用户。 在本教程中,用户将学习如何使用Django作为后端框架,处理数据存储、用户认证和API接口的创建。通过Django的ORM(对象关系映射),用户可以轻松地与数据库交互,存储和管理二手车信息。 前端部分,使用Vue.js构建动态用户界面,提供流畅的用户体验。用户将学习如何创建Vue组件,处理与Django后端的API请求,实现数据的实时展示和交互。 此外,教程还涵盖了如何将Scrapy集成到Django项目中,实现自动化的数据抓取功能。用户将学习如何编写Scrapy爬虫,从各大二手车网站抓取最新的车辆信息,并将数据存储到Django的数据库中。 为了帮助用户更好地理解整个开发流程,教程还提供了Python Web开发的学习思维导图,帮助用户系统性地掌握相关知识点。

2025-03-04

大数据分析&amp;amp;人工智能教程(Python) - Scrapy爬取二手车网站实战(含源码及Python web开发学习思维导图)

大数据分析&人工智能教程(Python) - Scrapy爬取二手车网站实战(含源码及Python web开发学习思维导图) 本资源提供了一个全面的实战教程,专注于使用Python的Scrapy框架来爬取二手车网站的数据。教程从基础的Scrapy框架介绍开始,逐步深入到如何针对特定网站进行数据爬取。通过这个教程,用户可以学习到如何构建Scrapy项目、定义数据模型(items.py)、编写爬虫逻辑(spiders.py),以及如何处理分页和数据提取等高级技巧。 教程还涵盖了如何将Scrapy与Django集成,利用Django的ORM功能将爬取的数据存储到数据库中。这一部分内容对于那些希望将爬虫数据用于Web应用开发的用户来说尤为重要。通过集成Scrapy和Django,用户可以构建一个完整的数据抓取、处理和存储的流水线,极大地提高了开发效率和数据管理能力。 最后,本资源还包含了Python Web开发的学习思维导图,帮助用户构建知识框架,更系统地学习Web开发。整体而言,这个资源是为那些希望在Python Web开发中实现高效数据爬取和处理的开发者准备的,希望大家从中获益。

2025-03-04

人工智能&amp;amp;深度学习:基于 Flask 的花卉图像预测项目资源(含全部源码及图片数据资源)

本资源是一个围绕 Flask 框架构建的花卉图像预测项目集合。 flower_data文件夹:存放着与花卉图像相关的数据,包含用于训练模型的花卉图像数据集,这些图像涵盖了多种花卉类别,为模型学习花卉特征提供基础素材。 best.pth文件:在深度学习模型训练过程中,会保存性能最佳的模型参数到此文件中。这里的best.pth存储着经过训练后,在花卉图像分类任务上表现最优的深度学习模型参数,后续的预测工作将基于此模型参数展开。 flask_predict.py文件:作为预测功能的核心代码文件之一,它定义了与花卉图像预测相关的函数或逻辑。接收前端传来的花卉图像数据,对图像进行预处理,使其符合模型输入要求,然后调用加载了best.pth参数的模型进行预测,得出花卉的类别等结果。 flask_server.py文件:负责搭建 Flask 服务器,处理客户端的请求与响应。它会监听特定的端口,接收来自网页或其他客户端的花卉图像预测请求,协调flask_predict.py完成预测任务,并将预测结果返回给客户端,实现整个基于 Web 的花卉图像预测服务流程。

2025-03-05

大数据分析&amp;amp;人工智能教程(Python) - 爬虫基本原理(含文档资料和源码)

大数据分析&人工智能教程(Python) - 爬虫基本原理(含文档资料和源码) 本资源是《Python大数据分析&人工智能教程》系列课程中关于爬虫基本原理的精华部分,它为学习者提供了一个全面的入门指南,涵盖了网络爬虫的核心技术和实战案例。具体内容包括: 1、HTTP协议基础:详细介绍了HTTP协议的工作原理,包括请求方法、状态码和头部信息等。 2、爬虫工作原理:资源中解释了爬虫的基本工作流程,从获取初始URL开始,到网页请求、内容解析、数据提取,以及最终的数据存储。 3、curl和wget使用:介绍了两个常用的命令行工具curl和wget,包括它们的安装、参数说明以及如何使用这些工具进行文件下载和网络请求。 4、Python urllib库:资源中详细讲解了urllib库的使用方法,包括如何发送请求、处理响应和异常。 5、页面解析技术:介绍了如何使用Python进行页面解析,包括正则表达式和BeautifulSoup库的使用。 6、requests库实战:资源中提供了使用requests库构建简单网络爬虫的步骤,包括发送GET和POST请求、定制请求头和处理响应。 7、实战案例与源码。

2025-03-04

人工智能&amp;amp;深度学习:PyTorch 图像识别实战 - 卷积神经网络与模块应用资源(源码+数据集+说明资料)

人工智能&深度学习:PyTorch 图像识别实战 - 卷积神经网络与模块应用资源(源码+数据集+说明资料) 本资源专注于图像识别实战,包含两个核心 Jupyter Notebook 文件和配套数据集,是学习图像识别的实用资料。 《卷积神经网络效果.ipynb》以 MNIST 数据集为依托,基于 PyTorch 完整展示卷积神经网络的搭建过程。它从参数定义开始,完成数据集的加载,并构建包含卷积、激活、池化等操作的网络层,最后进行准确率计算,清晰呈现了图像分类任务的全流程。 《图像识别实战常用模块解读.ipynb》围绕花卉数据展开,详细讲解图像分类模型的训练。涉及数据路径设置、数据增强操作(如旋转、裁剪、翻转等变换)以及数据集加载等关键模块,让学习者深入理解数据处理的要点。 资源中还配备了 data、flower_data 文件夹及完整的花卉图片数据集,为学习提供了丰富的数据支持。借助这些内容,学习者可以系统地掌握 PyTorch 在图像识别中的网络构建、数据处理及模型训练技巧,是深入理解卷积神经网络应用,提升图像识别实战能力的优质资源。

2025-03-06

人工智能&amp;amp;深度学习:PyTorch 实战 - DataLoader 自定义花卉数据集制作资源(源码+数据集+说明)

此资源专注于人工智能与深度学习领域,围绕 PyTorch 中 DataLoader 自定义数据集制作展开,核心为 “dataloader.ipynb” 文件及 “flower_data” 文件夹。 “dataloader.ipynb” 是关键 Jupyter Notebook 文件。开篇导入如 os、matplotlib、torch 等众多必要库,为后续操作筑牢基础。定义的 “load_annotations” 函数,能够从文本文件里读取图像文件名与对应标签信息,实现数据初步解析。后续代码围绕数据处理与转换展开,将读取的标签信息进一步处理,分离出图像名称列表与标签列表,为构建数据集做准备。此外,还涉及图像的读取、预处理(如尺寸调整、归一化等)以及如何将数据整理成符合 DataLoader 输入格式的过程,全方位展示了自定义数据集的制作流程。 “flower_data” 文件夹内容丰富,“train” 和 “valid” 子文件夹分别存放训练与验证图像数据;“train_filelist” 和 “val_filelist” 用于存储相关文件列表信息。

2025-03-06

人工智能&amp;amp;深度学习:物体检测经典算法实战资料集 - 含 YOLOv7、EfficientDet、CenterNet 等算法

此资源聚焦物体检测领域,囊括经典算法实战相关资料,是学习与研究物体检测的优质集合。 算法文档包括 “YOLOV7.pdf”“EfficientDet.pdf”“CenterNet.pdf”,系统阐述了 YOLOv7、EfficientDet、CenterNet 等主流算法的原理、架构及特性。 代码资源方面,“yolov7 - main.zip” 包含 YOLOv7 的核心代码,涵盖模型定义、训练与推理逻辑;“EfficientDet.zip” 是 EfficientDet 相关代码,有助于学习者动手实践算法训练与应用。“json2yolo.py” 是实用脚本,可实现数据格式转换,为算法训练数据准备提供便利。 “detr 目标检测源码解读.zip” 深入解读 DETR 算法源码,从 Transformer 架构在目标检测中的应用,到正负样本匹配等关键环节,逐步解析代码逻辑。“mmdetection - 3.x.zip” 是知名目标检测框架资料,便于拓展对多种物体检测算法实现的认知。“物体检测.pdf” 综合阐述物体检测领域知识,从发展历程到前沿趋势,为整体学习提供宏观视角。

2025-03-07

Python 数据分析实战必备!NumPy 与 Pandas 从入门到精通教程(PDF文档教程,文中含案例代码)

本资源聚焦Python数据分析领域核心库NumPy和Pandas,是一份精心整理的教程资料,适合数据科学爱好者、初学者及从业者。 1. 全面的知识体系:深入讲解NumPy的安装与使用,涵盖Ndarray对象、数据类型、数组创建、操作、运算等核心内容。详细介绍Pandas的Series、DataFrame数据结构,以及CSV、JSON数据处理和数据清洗、分析等实用技巧,帮助读者构建扎实的理论基础。 2. 丰富的实战案例:教程包含大量实例代码,从基础的数组操作、数据结构构建,到复杂的数据清洗、相关性分析,每个知识点都有对应的代码示例,便于理解和实践,可帮助读者快速上手,将所学知识应用到实际项目中。 3. 清晰的讲解逻辑:内容组织逻辑清晰,从概念引入到具体操作,逐步深入。先介绍基础概念,再通过实例展示如何运用这些概念解决实际问题,让读者轻松掌握NumPy和Pandas的使用方法,提升数据分析能力。 4. 广泛的应用场景:无论是数据挖掘、机器学习,还是日常的数据处理工作,NumPy和Pandas都发挥着重要作用。本教程所教授的技能可应用于多个领域,助力读者在数据处理与分析方面取得更好的成果。

2025-05-14

HALCON 联合 VC++ 图像读取显示工程源码(含注释版)- 零基础快速搭建视觉开发框架

本资源聚焦HALCON 与 VC++ 深度整合,提供完整可复用的图像读取显示工程源码,特别适合机器视觉开发学习者、工程师快速构建项目原型,突破技术瓶颈! 核心优势: 经典框架:基于 MFC 架构搭建,包含 VC++ 项目主文件caiji.vcproj、核心头文件、资源文件等完整工程结构,清晰呈现 HALCON 与 VC++ 的交互逻辑,助你理解跨平台开发底层原理。 深度注释:源码内嵌入大量中文注释,从HALCON图像读取接口调用到VC++界面显示逻辑,逐行解析关键代码,零基础也能快速上手。 功能全覆盖:不仅实现基础图像读取与显示,还集成 ActiveX 控件支持、打印预览功能,适配多场景开发需求;通过caijiDlg.h/cpp文件,展示对话框交互界面设计,方便扩展个性化功能。 工程规范:含资源文件caiji.rc、图标文件caiji.ico等,遵循专业开发标准,助你掌握工程配置、资源管理全流程,为进阶复杂视觉项目夯实基础。 适用人群: 机器视觉开发入门者,希望通过实战代码理解 HALCON 与 VC++ 开发逻辑; 项目赶工的工程师,直接复用源码节省开发时间; 高校师生,用于课程设计、毕业设计的参考模板。 特别提醒:资源包含预编译头文件(PCH)优化方案,显著提升编译效率;附带详细注释说明如何处理多语言资源与 MFC DLL 依赖,规避常见部署风险。 立即获取,解锁 HALCON 与 VC++ 联合开发的核心技术,抢占视觉开发先机!

2025-05-12

最新版物联网平台源码(基于Java全栈技术) 包含组态物联网源码 大屏可视化 通讯协议集成(MQTT、TCP等、支持海康摄像头)

本资源是一套功能强大且全面的物联网监控系统,基于 Java 主流技术栈(SpringMVC、Spring、MyBatis)与 MySQL 数据库构建,结合 HTML、Jquery 和 CSS 打造出美观易用的 Web 界面。 系统支持 TCP/IP、HTTP、MQTT 通讯协议,具备出色的兼容性和扩展性,能够无缝对接海康摄像头,实现对各类设备的数据实时采集与远程控制。无论是工业场景中的设备监控,还是智能家居中的环境监测,都能轻松胜任。 在功能方面,系统表现卓越。报警信息管理模块可及时捕捉异常情况,并将相关信息清晰展示,同时支持报表导出,方便用户进行数据分析和存档。自动控制与触发管理功能让系统根据预设条件自动执行操作,大大提高了工作效率。历史数据查询和报表导出功能则为用户提供了深入分析数据趋势的有力工具。 系统还提供了完善的权限管理机制,包括子账户和场景授权管理。不同用户可根据权限访问特定场景和功能,保障数据安全和隐私。场景信息管理和网关信息管理模块,方便用户对不同场景和设备网关进行集中配置和管理。 此外,系统文档齐全,无论是开发人员进行二次开发,还是运维人员进行日常维护,都能从中获取详细的指导。对于想要搭建物联网监控系统的开发者来说,本资源是一个不可多得的优质选择,能帮助您节省大量的开发时间和精力。

2025-04-29

Transformer:在视觉任务(含图像分类)中应用ViT算法【含全部源码及资源】

这份资源是一段 Python 代码,聚焦于利用 Vision Transformer(ViT)算法开展图像分类任务。其核心功能是在 CIFAR-10 或 CIFAR-100 数据集上训练 ViT 模型,以实现对图像类别的准确判断。 代码中,通过argparse模块设置了一系列关键参数,如模型类型(包括 ViT-B_16、ViT-B_32 等多种变体)、预训练模型路径、数据集选择(cifar10 或 cifar100)、输出目录等,方便用户根据需求灵活调整训练配置。 在模型构建方面,依据选定的模型类型从CONFIGS中获取相应配置,构建 ViT 模型,并从指定的预训练目录加载参数。训练过程中,利用get_loader函数准备训练和测试数据集,采用随机梯度下降(SGD)优化器,结合学习率调度器(支持余弦退火和线性衰减两种方式)对模型进行优化。同时,为了提升训练稳定性,设置了梯度裁剪和梯度累积等操作。 此外,代码还包含模型验证部分,通过计算交叉熵损失和准确率来评估模型性能。在训练期间,每隔一定步数便在验证集上进行验证,若验证准确率提升,则保存模型。

2025-03-05

人工智能之深度学习:神经网络分类与回归任务实战资源(源码+数据集+说明)

本资源围绕神经网络分类与回归任务展开深度实战,是人工智能与深度学习领域的优质学习素材。核心包含两大 Jupyter Notebook 文件: -“搭建 PyTorch 神经网络进行气温预测.ipynb”:专注回归任务,深度演示利用 PyTorch 实现气温预测(连续值预测场景)的全流程。从读取temps.csv(记录气温及关联因素的历史数据)开始,细致处理数据预处理、特征工程 —— 如时间信息编码、环境变量归一化;接着讲解模型架构设计,包括网络层搭建、激活函数选择;最后展示模型训练、优化及评估,让学习者掌握回归任务中数据处理、模型构建与调优的核心技巧。 -“神经网络分类任务.ipynb”:聚焦分类任务实践,适用于图像分类、文本分类等场景。代码覆盖分类数据处理(标签编码、数据集划分)、模型搭建全流程,深入介绍损失函数与优化器的选择逻辑,通过训练与验证环节的代码演示,剖析分类任务中神经网络对数据特征的学习机制。 本资源通过完整代码链路,展示从数据输入到模型输出的全流程,助力学习者掌握 PyTorch 在分类、回归任务中的应用方法,新手及开发者均可借此深入理解神经网络实际应用。

2025-03-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除